Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Adv Mater ; : e2404392, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838201

RESUMO

It is highly desired to develop a visual sensing system for ultrasensitive detection of colorless diclofenac (DCF), yet with a significant challenge. Herein, a novel dye-based photosensitization sensing system has been successfully developed for detecting DCF for the first time, in which the used dye eosin Y (DeY) can strongly absorb visible light and then be decolorized obviously by transferring photogenerated electrons to g-C3N4 nanosheets (CN), while the built single-atomic Co─N2O2 sites on CN by boron-oxygen connection can competitively adsorb DCF to impede the photosensitization decoloration of DeY. This system exhibits a broad detection range from 8 ng L-1 to 2 mg L-1 with 535 nm light, an exceptionally low detection limit (3.5 ng L-1), and remarkable selectivity. Through the time-resolved, in situ technologies, and theoretical calculations, the decolorization of DeY is attributed to the disruption of DeY's conjugated structure caused by the triplet excited state electron transfer from DeY to CN, meanwhile, the adsorbed oxygen facilitates the charge transfer process. The preferential adsorption of DCF mainly depends on the strong interactions between the as-constructed single-atom Co and Cl in DCF. This study opens an innovative light-driven sensing system by combining dye and single-atom metal/nanomaterial for visually intuitive detection of environmental pollutants.

2.
Nat Commun ; 14(1): 1457, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928357

RESUMO

Photocatalytic CO2 conversion promises an ideal route to store solar energy into chemical bonds. However, sluggish electron kinetics and unfavorable product selectivity remain unresolved challenges. Here, an ionic liquid, 1-ethyl-3-methylimidazolium tetrafluoroborate, and borate-anchored Co single atoms were separately loaded on ultrathin g-C3N4 nanosheets. The optimized nanocomposite photocatalyst produces CO and CH4 from CO2 and water under UV-vis light irradiation, exhibiting a 42-fold photoactivity enhancement compared with g-C3N4 and nearly 100% selectivity towards CO2 reduction. Experimental and theoretical results reveal that the ionic liquid extracts electrons and facilitates CO2 reduction, whereas Co single atoms trap holes and catalyze water oxidation. More importantly, the maximum electron transfer efficiency for CO2 photoreduction, as measured with in-situ µs-transient absorption spectroscopy, is found to be 35.3%, owing to the combined effect of the ionic liquid and Co single atoms. This work offers a feasible strategy for efficiently converting CO2 to valuable chemicals.

3.
Adv Mater ; 35(15): e2211575, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36680460

RESUMO

Ultrasensitively selective detection of trace polycyclic aromatic hydrocarbons (PAHs) like phenanthrene (PHE) is critical but remains challenging. Herein, atomically dispersed Zn sites on g-C3 N4 nanosheets (sZn-CN) are constructed by thermal polymerization of a Zn-cyanuric acid-melamine supramolecular precursor for the fluorescence detection of PHE. A high amount (1.6 wt%) of sZn is grafted in the cave of CN with one N vacancy in the form of unique Zn(II)N5 coordination. The optimized sZn-CN achieves a wide detection range (1 ng L-1 to 5 mg L-1 ), ultralow detection limit (0.35 ng L-1 , with 5-order magnitude improvement over CN), and ultrahigh selectivity toward PHE even among typical PAHs based on the built PHE-CN dual ratiometric fluorescence method. By means of in situ Fourier transform infrared spectroscopy, time-resolved absorption and fluorescence spectroscopy, and theoretical calculations, the resulting superior detection performance is attributed to the favorable selective adsorption of PHE on as-constructed atomic Zn(II)N5 sites via the ionic cation-π interactions (Znδ+ C2 δ- type), and the fluorescence quenching is dominated by the inner filter effect (IFE) from the multilayer adsorption of PHE at low concentrations, while it is done by the protruded photogenerated electron-transfer process, as well as IFE from the monolayer adsorption of PHE at ultralow concentration.

4.
J Hazard Mater ; 425: 127990, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-34986565

RESUMO

The development of highly-sensitive fluorescence detection systems for environmental contaminants has become high priority research in the past years. Special attention has been paid to graphitic carbon nitride (g-C3N4)-based nanomaterials, whose unique and superior optical property makes them promising and attractive candidates for this purpose. It is necessary to enhance the current understanding of the various classes of g-C3N4-based fluorescence detection systems and their mechanisms, as well as find suitable approaches to improve detection performance for environmental monitoring, protection, and management. In this review, the recent progresses on g-C3N4-based fluorescence detections for environmental contaminants, mainly including their basic principles, mechanisms, applications, modification strategies, and conclusions, are summarized. A particular emphasis is placed on the design and development of modification strategies for g-C3N4 with the objective of improving detection performance. High photoluminescence quantum yield, tunable fluorescence emission characteristics, and strong adsorption capacity of g-C3N4 could ensure the ultrasensitivity and selectivity of fluorescence detection of environmental contaminants. Concluding perspectives on the challenges and opportunities to design highly efficient g-C3N4-based fluorescence detection system are intensively put forward as well.


Assuntos
Nanoestruturas , Fluorescência
5.
Adv Mater ; 33(48): e2105482, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34569106

RESUMO

The configuration regulation of single-atom photocatalysts (SAPCs) can significantly influence the interfacial charge transfer and subsequent catalytic process. The construction of conventional SAPCs for aqueous CO2 reduction is mainly devoted toward favorable activation and photoreduction of CO2 , however, the role of water is frequently neglected. In this work, single Ni atoms are successfully anchored by boron-oxo species on g-C3 N4 nanosheets through a facile ion-exchange method. The dative interaction between the B atom and the sp2 N atom of g-C3 N4 guarantees the high dispersion of boron-oxo species, where O atoms coordinate with single Ni (II) sites to obtain a unique six-oxygen-coordinated configuration. The optimized single-atom Ni photocatalyst, rivaling Pt-modified g-C3 N4 nanosheets, provides excellent CO2 reduction rate with CO and CH4 as products. Quasi-in-situ X-ray photoelectron spectra, transient absorption spectra, isotopic labeling, and in situ Fourier transform infrared spectra reveal that as-fabricated six-oxygen-coordinated single Ni (II) sites can effectively capture the photoelectrons of CN along the BO bridges and preferentially activate adsorbed water to produce H atoms to eventually induce a hydrogen-assisted CO2 reduction. This work diversifies the synthetic strategies for single-atom catalysts and provides insight on correlation between the single-atom configuration and reaction pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...