Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Transl Med ; 14(1): e1556, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38279874

RESUMO

BACKGROUND: Human papillomavirus (HPV) integration into the host genome is an important factor in HPV(+)OPSCC carcinogenesis, in conjunction with HPV oncoproteins E6/E7. However, a well-studied investigation about virus-host interaction still needs to be completed. Our objective is to characterise HPV integration to investigate potential mechanisms of tumourigenesis independent of E6/E7 oncoproteins. MATERIALS AND METHODS: High-throughput viral integration detection was performed on 109 HPV(+)OPSCC tumours with relevant clinicopathological information. Of these tumours, 38 tumours underwent targeted gene sequencing, 29 underwent whole exome sequencing and 26 underwent RNA sequencing. RESULTS: HPV integration was detected in 94% of tumours (with a mean integration count of 337). Tumours occurring at the tonsil/oropharyngeal wall that exhibit higher PD-L1 expression demonstrated increased integration sites (p = .024). HPV exhibited a propensity for integration at genomic sites located within specific fragile sites (FRA19A) or genes associated with functional roles such as cell proliferation and differentiation (PTEN, AR), immune evasion (CD274) and glycoprotein biosynthesis process (FUT8). The viral oncogenes E2, E4, E6 and E7 tended to remain intact. HPV fragments displayed enrichment within host copy number variation (CNV) regions. However, insertions into genes related to altered homologous recombination repair were infrequent. Genes with integration had distinct expression levels. Fifty-nine genes whose expression level was affected by viral integration were identified, for example, EPHB1, which was reported to be involved in cellular protein metabolic process. CONCLUSIONS: HPV can promote oncogenesis through recurrent integration into functional host genome regions, leading to subsequent genomic aberrations and gene expression disruption. This study characterises viral integrations and virus-host interactions, enhancing our understanding of HPV-related carcinogenesis mechanisms.


Assuntos
Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Papillomavirus Humano , Infecções por Papillomavirus/genética , Variações do Número de Cópias de DNA , Papillomaviridae/genética , Proteínas E7 de Papillomavirus/genética , Carcinogênese/genética
2.
Cell Biosci ; 13(1): 122, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393249

RESUMO

BACKGROUND: Salivary carcinoma ex pleomorphic adenoma (CXPA) is defined as a carcinoma that develops from benign pleomorphic adenoma (PA). Abnormally activated Androgen signaling pathway and amplification of HER-2/neu(ERBB-2) gene are known to be involved in CXPA tumorigenesis. Recent progress in tumour microenvironment research has led to identification that extracellular matrix (ECM) remodelling and increased stiffness act as critical contributing role in tumour carcinogenesis. This study examined ECM modifications to elucidate the mechanism underlying CXPA tumorigenesis. RESULTS: PA and CXPA organoids were successfully established. Histological observation, immunohistochemistry (IHC), and whole-exome sequencing demonstrated that organoids recapitulated phenotypic and molecular characteristics of their parental tumours. RNA-sequencing and bioinformatic analysis of organoids showed that differentially expressed genes are highly enriched in ECM-associated terms, implying that ECM alternations may be involved in carcinogenesis. Microscopical examination for surgical samples revealed that excessive hyalinized tissues were deposited in tumour during CXPA tumorigenesis. Transmission electron microscopy confirmed that these hyalinized tissues were tumour ECM in nature. Subsequently, examination by picrosirius red staining, liquid chromatography with tandem mass spectrometry, and cross-linking analysis indicated that tumour ECM was predominantly composed of type I collagen fibers, with dense collagen alignment and an increased level of collagen cross-linking. IHC revealed the overexpression of COL1A1 protein and collagen-synthesis-related genes, DCN and IGFBP5 (p < 0.05). Higher stiffness of CXPA than PA was demonstrated by atomic force microscopy and elastic imaging analysis. We utilized hydrogels to mimic ECM with varying stiffness degrees in vitro. Compared with softer matrices (5Kpa), CXPA cell line and PA primary cells exhibited more proliferative and invasive phenotypes in stiffer matrices (50Kpa, p < 0.01). Protein-protein interaction (PPI) analysis of RNA-sequencing data revealed that AR and ERBB-2 expression was associated with TWIST1. Moreover, surgical specimens demonstrated a higher TWIST1 expression in CXPA over PA. After knocking down TWIST1 in CXPA cells, cell proliferation, migration, and invasiveness were significantly inhibited (p < 0.01). CONCLUSION: Developing CXPA organoids provides a useful model for cancer biology research and drug screening. ECM remodelling, attributed to overproduction of collagen, alternation of collagen alignment, and increased cross-linking, leads to increased ECM stiffness. ECM modification is an important contributor in CXPA tumorigenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...