Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Small ; : e2310563, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757918

RESUMO

Carbon dots (CDs) have received considerable attention in many application areas owing to their unique optical properties and potential applications; however, the fluorescent mechanism is an obstacle to their applications. Herein, three-color emissive CDs are prepared from single o-phenylenediamine (oPD) by regulating the ratio of ethanol and dimethylformamide (DMF). Fluorescent mechanism of these CDs is proposed as molecular state fluorescence. Reaction intermediates are identified using liquid chromatrography-mass spectroscopy (LC-MS) and 1H nuclear magnetic resonance (NMR) spectra. 1H-Benzo[d]imidazole (BI), 2,3-diaminophenazine (DAP), and 5,14-dihydroquinoxalino[2,3-b] phenazine (DHQP) are proposed to be the fluorophores of blue, green, and red emissive CDs by comparing their optical properties. As per the LC-MS and 1H-NMR analysis, DHQP with red emission tends to form from DAP and oPD in pure ethanol. By adding DMF, BI formation is enhanced and DHQP formation is suppressed. The prepared CDs exhibit green emission with DAP. When the DMF amount is >50%, BI formation is considerably promoted, resulting in DAP formation being suppressed. BI with blue emission then turns into the fluorophore of CDs. This result provides us an improved understanding of the fluorescent mechanism of oPD-based CDs, which guides us in designing the structure and optical properties of CDs.

2.
Histol Histopathol ; : 18754, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38721911

RESUMO

OBJECTIVE: Periodontitis and atherosclerosis are chronic inflammatory diseases characterized by leukocyte infiltration. We investigated the expression of CCL4, CCR5, c-Jun, c-Fos, NF-κB, and CCL2 as well as the possible mechanism involved in the regulation of CCL2 in human periodontitis tissues and atherosclerotic aorta based on previous research on the CCL4/CCR5/c-Jun and c-Fos/CCL2 pathway leading to CCL2 expression in collagen-induced arthritis (CIA) rat. METHODS: Sixty-five volunteers were recruited and the condition of their gingiva and coronary arteries were assessed. The subjects were divided into four groups: healthy control, chronic periodontitis (CP), coronary artery diseases (CAD), and noncoronary artery diseases (non-CAD). Total RNA was isolated from gingiva in periodontitis patients and control populations and from the aorta in patients with and without CAD. PCR was used to examine CCL4, CCR5, c-Jun, c-Fos, NF-κB, and CCL2 levels. The production of CCL2 in the gingiva and aorta was analyzed by immunostaining. RESULTS: PCR revealed that CCL4, CCR5, and CCL2 mRNA levels were increased in CP patients' gingivae and aortas from coronary artery bypass grafting (CABG) patients. Marked c-Jun, c-Fos, and NF-κB gene productions were detected in CP patients' gingivae but did not show statistical differences between the CAD and non-CAD groups. Stronger immunoreactivity against CCL2 was observed in periodontitis gingiva and aorta from CABG patients. CONCLUSIONS: Our findings suggest that the CCL4/CCR5/c-Jun and c-Fos/CCL2 pathways may be involved in CCL2 expression in periodontitis. CCL4, CCR5, and CCL2 might act as possible nodes to link the presence of periodontitis and atherosclerosis.

3.
PeerJ Comput Sci ; 10: e1839, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660209

RESUMO

Multi-modal multi-objective problems (MMOPs) have gained much attention during the last decade. These problems have two or more global or local Pareto optimal sets (PSs), some of which map to the same Pareto front (PF). This article presents a new affinity propagation clustering (APC) method based on the Multi-modal multi-objective differential evolution (MMODE) algorithm, called MMODE_AP, for the suit of CEC'2020 benchmark functions. First, two adaptive mutation strategies are adopted to balance exploration and exploitation and improve the diversity in the evolution process. Then, the affinity propagation clustering method is adopted to define the crowding degree in decision space (DS) and objective space (OS). Meanwhile, the non-dominated sorting scheme incorporates a particular crowding distance to truncate the population during the environmental selection process, which can obtain well-distributed solutions in both DS and OS. Moreover, the local PF membership of the solution is defined, and a predefined parameter is introduced to maintain of the local PSs and solutions around the global PS. Finally, the proposed algorithm is implemented on the suit of CEC'2020 benchmark functions for comparison with some MMODE algorithms. According to the experimental study results, the proposed MMODE_AP algorithm has about 20 better performance results on benchmark functions compared to its competitors in terms of reciprocal of Pareto sets proximity (rPSP), inverted generational distances (IGD) in the decision (IGDX) and objective (IGDF). The proposed algorithm can efficiently achieve the two goals, i.e., the convergence to the true local and global Pareto fronts along with better distributed Pareto solutions on the Pareto fronts.

4.
J Am Chem Soc ; 146(12): 8668-8676, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38498937

RESUMO

Understanding the valency and structural variations of metal centers during reactions is important for mechanistic studies of single-atom catalysis, which could be beneficial for optimizing reactions and designing new protocols. Herein, we precisely developed a single-atom Cu(I)-N4 site catalyst via a photoinduced ligand exchange (PILE) strategy. The low-valent and electron-rich copper species could catalyze hydrophosphinylation via a novel single-electron oxidative addition (OA) pathway under light irradiation, which could considerably decrease the energy barrier compared with the well-known hydrogen atom transfer (HAT) and single electron transfer (SET) processes. The Cu(I)-Cu(II)-Cu(I) catalytic cycle, via single-electron oxidative addition and photoreduction, has been proven by multiple in situ or operando techniques. This catalytic system demonstrates high efficiency and requires room temperature conditions and no additives, which improves the turnover frequency (TOF) to 1507 h-1. In particular, this unique mechanism has broken through the substrate limitation and shows a broad scope for different electronic effects of alkenes and alkynes.

5.
Sci Total Environ ; 926: 172024, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547989

RESUMO

The use of reclaimed water for urban river replenishment has raised concerns regarding its impact on water quality and aquatic ecosystems. This study aims to reveal the improvements seen in an urban river undergoing a practical water eco-remediation after being replenished with reclaimed water. A one-year monitoring of water quality, phytoplankton, and zooplankton was carried out in Dongsha River undergoing eco-remediation in Beijing, China. The results showed that compared to the unrestored river, the concentrations of COD, NH4+-N, TP, and TN decreased by 28.22 ± 7.88 %, 40.24 ± 11.77 %, 44.17 ± 17.29 %, and 28.66 ± 10.39 % in the restoration project area, respectively. The concentration of Chlorophyll-a in the restoration area was maintained below 40 µg/L. During summer, when algal growth is vigorous, the density of Cyanophyta in the unrestored river decreased from 46.84 × 104cells/L to 16.32 × 104cells/L in the restored area, while that of Chlorophyta decreased from 41.61 × 104cells/L to 11.87 × 104cells/L, a reduction of 65.16 % and 71.47 %, respectively. The dominant phytoplankton species were replaced with Bacillariophyta, such as Synedra sp. and Nitzschia sp., indicating that the restoration of aquatic plants reduces the risk of Cyanophyta blooms. Zooplankton species also changed in the restoration area, especially during summer. The density of pollution-tolerant Rotifer and Protozoa decreased by 31.06 % and 27.22 %, while the density of clean water indicating Cladocera increased by 101.19 %. We further calculated the diversity and evenness index of phytoplankton and zooplankton within and outside the restoration area. The results showed that the Shannon-Weaver index for phytoplankton and zooplankton in the restoration area was 2.1 and 1.91, which was higher than those in the river (1.84 and 1.82). This further confirmed that aquatic plant restoration has positive effects. This study can provide a practical reference and theoretical basis for the implementation of water ecological restoration projects in other reclaimed water rivers in China.


Assuntos
Cianobactérias , Diatomáceas , Animais , Qualidade da Água , Pequim , Ecossistema , Rios , China , Fitoplâncton , Zooplâncton , Monitoramento Ambiental
6.
J Environ Sci (China) ; 138: 189-199, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135387

RESUMO

Membrane distillation (MD) is a promising alternative desalination technology, but the hydrophobic membrane cannot intercept volatile organic compounds (VOCs), resulting in aggravation in the quality of permeate. In term of this, electro-Fenton (EF) was coupled with sweeping gas membrane distillation (SGMD) in a more efficient way to construct an advanced oxidation barrier at the gas-liquid interface, so that the VOCs could be trapped in this layer to guarantee the water quality of the distillate. During the so-called EF-MD process, an interfacial interception barrier containing hydroxyl radical formed on the hydrophobic membrane surface. It contributed to the high phenol rejection of 90.2% with the permeate phenol concentration lower than 1.50 mg/L. Effective interceptions can be achieved in a wide temperature range, even though the permeate flux of phenol was also intensified. The EF-MD system was robust to high salinity and could electrochemically regenerate ferrous ions, which endowed the long-term stability of the system. This novel EF-MD configuration proposed a valuable strategy to intercept VOCs in MD and will broaden the application of MD in hypersaline wastewater treatment.


Assuntos
Compostos Orgânicos Voláteis , Purificação da Água , Destilação/métodos , Membranas Artificiais , Purificação da Água/métodos , Fenóis
7.
J Environ Manage ; 351: 119931, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154220

RESUMO

Iodinated contrast media (ICM), one of the pharmaceutical and personal care products (PPCPs), are frequently detected in various water bodies due to the strong biochemical stability and recalcitrance to conventional water treatment. Additionally, ICM pose a risk of forming iodinated by-products that can be detrimental to the aquatic ecosystem. Consequently, effectively removing ICM from aqueous environments is a significant concern for environmental researchers. This article provides a comprehensive review of the structural characteristics of ICM, their primary source (e.g., domestic and hospital wastewater), detected concentrations in water environments, and ecological health hazards associated with them. The current wastewater treatment technologies for ICM control are also reviewed in detail with the aim of providing a reference for future research. Prior researches have demonstrated that traditional treatment processes (such as physical adsorption, biochemical method and chemical oxidation method) have inadequate efficiencies in the removal of ICM. Currently, the application of advanced oxidation processes to remove ICM has become extensive, but there are some issues like poor deiodination efficiency and the risk of forming toxic intermediates or iodinated by-products. Conversely, reduction technologies have a high deiodination rate, enabling the targeted removal of ICM. But the subsequent treatment issues related to iodine (such as I- and OI-) are often underestimated, potentially generating iodinated by-products during the subsequent treatment processes. Hence, we proposed using combined reduction-oxidation technologies to remove ICM and achieved synchronous control of iodinated by-products. In the future, it is recommended to study the degradation efficiency of ICM and the control efficiency of iodinated by-products by combining different reduction and oxidation processes.


Assuntos
Iodo , Poluentes Químicos da Água , Purificação da Água , Meios de Contraste/química , Ecossistema , Poluentes Químicos da Água/química , Iodo/química , Águas Residuárias , Purificação da Água/métodos
8.
Nanomaterials (Basel) ; 13(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37513073

RESUMO

Carbon dots (CDs), as a new zero-dimensional carbon-based nanomaterial with desirable optical properties, exhibit great potential for many application fields. However, the preparation technique of multiple emission CDs with high yield is difficult and complex. Therefore, exploring the large-scale and straightforward synthesis of multicolor CDs from a simple carbon source is necessary. In this work, the solvent-free method prepares a series of multicolor emission CDs from dihydroxybenzoic acid (DHBA). The maximum emission wavelengths are 408, 445, 553, 580, and 610 nm, respectively, covering the visible light region. The 2,4- and 2,6-CDs possess the longer emission wavelength caused by the 2,4-, and 2,6-DHBA easily undergo decarboxylation to form the larger sp2 domain graphitized structure. These CDs incorporated with g-C3N4 can significantly improve the photocatalytic water-splitting hydrogen production rate by extending the visible light absorption and enhancing the charge separation efficiency. The long-wavelength emission CDs can further enhance photocatalytic activity primarily by improving visible light absorption efficiency.

9.
Water Res ; 233: 119795, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36871380

RESUMO

To unravel the low membrane fouling tendency and underlying membrane fouling mechanism of liquid-liquid hollow fiber membrane contactor (LL-HFMC) capturing ammonia from human urine, the ammonia flux decline trend, membrane fouling propensity, foulant-membrane thermodynamic interaction energy and microscale force analysis at different feed urine pH were comprehensively investigated. The 21-d continuous experiments showed that the ammonia flux decline trend and membrane fouling propensity significantly strengthened with the decrease of feed urine pH. The calculated foulant-membrane thermodynamic interaction energy decreased with the decreasing feed urine pH and agreed with the ammonia flux decline trend and membrane fouling propensity. The microscale force analysis showed that the absence of hydrodynamic water permeate drag force resulted in the foulant located at long distance from the membrane were difficult to approach the membrane surface, thus considerably alleviating membrane fouling. Additionally, the vital thermodynamic attractive force near the membrane surface increased with the decrease of feed urine pH, which made the membrane fouling further relieved at high pH condition. Therefore, the absence of water permeate drag force and operating at high pH condition minimized the membrane fouling during the LL-HFMC ammonia capture process. The obtained results provide a new insight into the low membrane tendency mechanism of LL-HFMC.


Assuntos
Amônia , Purificação da Água , Humanos , Membranas Artificiais , Termodinâmica , Água , Purificação da Água/métodos
10.
J Transl Genet Genom ; 7(1): 3-16, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817228

RESUMO

Aim: Obesity and obesogenic diets might partly accelerate cancer development through epigenetic mechanisms. To determine these early effects, we investigated the impact of three days of a high-fat diet on epigenomic and transcriptomic changes in Apc Min/+ murine intestinal epithelia. Method: ChIP-Seq and RNA-Seq were performed on small intestinal epithelia of WT and Apc Min/+ male mice fed high-fat diet (HFD) or low-fat diet (LFD) for three days to identify genomic regions associated with differential H3K27ac levels as a marker of variant enhancer loci (VELs) as well as differentially expressed genes (DEGs). Results: Regarding epigenetic and transcriptomic changes, diet type (LFD vs. HFD) showed a significant impact, and genotype (WT vs.Apc Min/+) showed a small impact. Compared to LFD, HFD resulted in 1306 gained VELs, 230 lost VELs, 133 upregulated genes, and 127 downregulated genes in WT mice, with 1056 gained VELs, 371 lost VELs, 222 upregulated genes, and 182 downregulated genes in Apc Min/+ mice. Compared to the WT genotype, the Apc Min/+ genotype resulted in zero changed VELs for either diet type group, 21 DEGs for LFD, and 48 DEGs for HFD. Most gained VELs, and upregulated genes were associated with lipid metabolic processes. Gained VELs were also associated with Wnt signaling. Downregulated genes were associated with antigen presentation and processing. Conclusion: Three days of HFD-induced epigenomic and transcriptomic changes involving metabolic and immunologic pathways that may promote tumor growth in the genetically predisposed murine intestine without affecting key cancer signaling pathways.

11.
Small ; 19(31): e2206180, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36650992

RESUMO

Fluorescent carbon dots are a novel type of nanomaterial. Due to their excellent optical properties, they have extensive application prospects in many fields. Studying the formation process and fluorescence mechanism of CDs will assist scientists in understanding the synthesis of CDs and guide more profound applications. Due to their conjugated structures, aromatic compounds have been continuously used to synthesize CDs, with emissions ranging from blue to NIR. There is a lack of a systematic summary of the formation process and fluorescence mechanism of aromatic precursors to form CDs. In this review, the formation process of CDs is first categorized into three main classes according to the precursor types of aromatic compounds: amines, phenols, and polycyclics. And then, the fluorescence mechanism of CDs synthesized from aromatic compounds is summarized. The challenges and prospects are proposed in the last section.

12.
Light Sci Appl ; 11(1): 298, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229434

RESUMO

Carbon dots (CDs) as the advancing fluorescent carbon nanomaterial have superior potential and prospective. However, the ambiguous photoluminescence (PL) mechanism and intricate structure-function relationship become the greatest hindrances in the development and applications of CDs. Herein, red emissive CDs were synthesized in high yield from o-phenylenediamine (oPD) and catechol (CAT). The PL mechanism of the CDs is considered as the molecular state fluorophores because 5,14-dihydroquinoxalino[2,3-b] phenazine (DHQP) is separated and exhibits the same PL properties and behavior as the CDs. These include the peak position and shape of the PL emission and PL excitation and the emission dependence on pH and solvent polarity. Both of them display close PL lifetime decays. Based on these, we deduce that DHQP is the fluorophore of the red emissive CDs and the PL mechanism of CDs is similar to DHQP. During the PL emission of CDs, the electron of the molecule state can transfer to CDs. The formation process of DHQP is further confirmed by the reaction intermediates (phthalazine, dimers) and oPD. These findings provide insights into the PL mechanism of this type of CDs and may guide the further development of tunable CDs for tailored properties.

13.
Sci Total Environ ; 851(Pt 2): 158178, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35995156

RESUMO

Here, a novel combined heterotrophic and bio-electrochemical hydrogen autotrophic (CHBHA) system was developed to remove perchlorate under low chemical dosages and energy consumption. The perchlorate removal performance at various hydraulic retention times (HRTs) and acetate dosages was investigated. For influent containing 10 ± 0.10 mg/L perchlorate, the optimal removal efficiency by the CHBHA system was 98.96 ± 1.62 %, 92.99 ± 2.99 %, 97.85 ± 0.41 %, and 98.24 ± 1.56 % at different operating stages. Perchlorate was mainly removed in the heterotrophic part (H-part) at a sufficient HRT (6 h) and acetate dosage (14.75 mg/L). At other stages, perchlorate was synergistically removed by the H-part and electrochemical hydrogen autotrophic part (E-part). Since the H-part removed some perchlorate, the E-part's applied current decreased, thus reducing energy costs. The maximum current efficiency of CHBHA system was 22.09 %. Compared with the single E-part system, the combined system used 65 % less energy. Perchlorate was converted into active chlorine in the E-part, which improved the effluent quality. The bacterial community structures of the two parts were significantly different. Comamonas, Dechloromonas, Acinetobacter, and Chryseobacterium were enriched in the H-part, and the dominant genera in the E-part were Thauera, Azonexus, Hydrogenophaga, and Tissierella.


Assuntos
Hidrogênio , Percloratos , Percloratos/química , Cloro , Reatores Biológicos/microbiologia , Enxofre/química , Nitratos , Desnitrificação
14.
J Hazard Mater ; 437: 129383, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35728315

RESUMO

The application of surfactant-enhanced air sparging (SEAS) in heterogeneous aquifers has received increasing attention. In this study, a two-dimensional laboratory visualization device was used to study the migration and distribution mechanism of airflow and the nitrobenzene removal effect in an aquifer with a low-permeability lens during AS and SEAS. Experimental results showed that the surfactant significantly reduced the blocking effect of the geological interface on airflow, and the ΔPe (the air entry pressure difference between the background media and the lens) value of the geological interface decreased from 1.1 kPa to 0.3 kPa when the surfactant concentration was 800 mg/L. When the surfactant injection location was at the center of the lens and the injection volume was 1 PV (pore volume of the lens), part of the airflow entered the lens through its below interface, which clearly improved the nitrobenzene removal inside and above the lens compared with AS remediation. However, when SEAS remediation was 24 h, the surfactant redistribution caused by air sparging resulted in the airflow entering the lens to bypass the lens again, which changed the spatial distribution of airflow rate and was not conducive to the continuous removal of nitrobenzene inside the lens.


Assuntos
Água Subterrânea , Surfactantes Pulmonares , Poluentes Químicos da Água , Nitrobenzenos , Permeabilidade , Tensão Superficial , Tensoativos , Poluentes Químicos da Água/análise
15.
Diabetes ; 71(5): 1099-1114, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35179568

RESUMO

Endothelial nitric oxide synthase (eNOS) monomerization and uncoupling play crucial roles in mediating vascular dysfunction in diabetes, although the underlying mechanisms are still incompletely understood. Increasing evidence indicates that autophagic dysregulation is involved in the pathogenesis of diabetic endothelial dysfunction; however, whether autophagy regulates eNOS activity through controlling eNOS monomerization or dimerization remains elusive. In this study, autophagic flux was impaired in the endothelium of diabetic db/db mice and in human endothelial cells exposed to advanced glycation end products or oxidized low-density lipoprotein. Inhibition of autophagic flux by chloroquine or bafilomycin A1 were sufficient to induce eNOS monomerization and lower nitric oxide bioavailability by increasing mitochondrial reactive oxygen species (mtROS). Restoration of autophagic flux by overexpressing transcription factor EB (TFEB), a master regulator of autophagy and lysosomal biogenesis, decreased endothelial cell oxidative stress, increased eNOS dimerization, and improved endothelium-dependent relaxations (EDRs) in db/db mouse aortas. Inhibition of mammalian target of rapamycin kinase (mTOR) increased TFEB nuclear localization, reduced mtROS accumulation, facilitated eNOS dimerization, and enhanced EDR in db/db mice. Moreover, calorie restriction also increased TFEB expression, improved autophagic flux, and restored EDR in the aortas of db/db mice. Taken together, the findings of this study reveal that mtROS-induced eNOS monomerization is closely associated with the impaired TFEB-autophagic flux axis leading to endothelial dysfunction in diabetic mice.


Assuntos
Diabetes Mellitus Experimental , Óxido Nítrico Sintase Tipo III , Animais , Autofagia , Diabetes Mellitus Experimental/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Mamíferos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Espécies Reativas de Oxigênio/metabolismo
16.
Water Res ; 207: 117811, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34763277

RESUMO

Hollow fiber membrane contactor (HFMC) is a promising technology for removing or recovering wastewaters' volatile components. Developing a rational design method is very important for guiding its further application. In this study, we proposed a method to design the multi-stage open-loop hollow fiber membrane contactor (HFMC) employing shell-side influent. In addition, a three-stage HFMC was designed to capture ammonia from real hydrolyzed human urine. A continuous 1344 h performance was conducted. The results showed that the experimental effluent total ammonium nitrogen (TAN) concentration and ammonia mass transfer coefficient matched the predicted results well, which indicated that the design method was feasible and accurate. The three-stage HFMC showed excellent ammonia capture capacity with a TAN recovery efficiency of 93.29%, and the final effluent TAN concentration was 30.98±14.70 mg/L which met our design requirement (lower than 50 mg/L). More than 98.92% of the inorganic ions and 96.85% of the organic matter were retained in the effluent. The stripping solution after ammonia capture was the high-purity ammonium sulfate solution with low concentration of small molecular weight hydrophilic organic substances. The inorganic and organic membrane fouling was mild and randomly distributed. The inorganic membrane fouling was attributed to the deposition of calcium-, magnesium-, phosphate-related inorganic compounds, while the organic membrane fouling was mainly protein and carbohydrate. After the ammonia capture process, the surface hydrophobicity and pore properties of the membranes had no significant changes. These results demonstrated that the multi-stage open-loop HFMC could be a potential alternative for ammonia recovery from the high concentration of ammonium nitrogen wastewater.


Assuntos
Amônia , Águas Residuárias , Sulfato de Amônio , Humanos , Membranas Artificiais , Nitrogênio
17.
Life Sci ; 286: 120039, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34637797

RESUMO

AIM: This study investigated the roles of bone morphogenetic protein-4 (BMP4) and ROS in diabetic endothelial dysfunction and explored whether Salvianolic acid B (Sal B) improved endothelial function by affecting BMP4-ROS in diabetic mice. MAIN METHODS: db/db mice were orally administrated with Sal B (10 mg/kg/day) for one week while db/m + mice were injected with adenoviral vectors delivering BMP4 (3 × 108 pfu) and then received one week-Sal B treatment. ROS levels were assayed by DHE staining. Protein expression and phosphorylation were evaluated by Western blot. Aortic rings were suspended in myograph for force measurement. Flow-mediated dilatations in the second-order mesenteric arteries were determined by pressure myograph. KEY FINDINGS: We first revealed the existence of a BMP4-ROS cycle in db/db mice, which stimulated p38 MAPK/JNK/caspase 3 and thus participated in endothelial dysfunction. One week-treatment or 24 h-incubation with Sal B disrupted the cycle, suppressed p38 MAPK/JNK/caspase 3 cascade, and improved endothelium-dependent relaxations (EDRs) in db/db mouse aortas. Importantly, in vivo Sal B treatment also improved flow-mediated dilatation in db/db mouse second order mesenteric arteries. Furthermore, in vivo BMP4 overexpression induced oxidative stress, stimulated p38 MAPK/JNK/caspase 3, and impaired EDRs in db/m + mouse aortas, which were all reversed by Sal B. SIGNIFICANCE: The present study demonstrates that Sal B ameliorates endothelial dysfunction through breaking the BMP4-ROS cycle and subsequently inhibiting p38 MAPK/JNK/caspase 3 in diabetic mice and provides evidence for the additional new mechanism underlying the benefit of Sal B against diabetic vasculopathy.


Assuntos
Benzofuranos/farmacologia , Proteína Morfogenética Óssea 4/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Aorta/metabolismo , Benzofuranos/metabolismo , Proteína Morfogenética Óssea 4/fisiologia , Proteínas Morfogenéticas Ósseas/metabolismo , Caspase 3/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Diabetes Mellitus Experimental/metabolismo , Angiopatias Diabéticas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Artérias Mesentéricas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/fisiologia , Doenças Vasculares/metabolismo , Vasodilatação/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
ACS Nano ; 15(5): 8753-8760, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33961409

RESUMO

Circularly polarized (CP) lasers derived from low-cost and renewable raw sources are attracting increasing attention in photonics and material science. Here, we present a facile and effective approach to fabricate CP lasers by the evaporation-induced assembly of cellulose nanocrystals (CNCs) and a laser dye. The obtained laser exhibits a controlled chiral nematic structure, which acts as a chiral optical cavity, and varied chiral coupling interactions. It is shown that the CNC-based laser can modify the polarization state of the laser into left-handed polarization, leading to strong CP laser emission (CPLE) with a dissymmetry factor up to 0.35. The chiral nematic CNC structure proves to be a versatile yet straightforward strategy to generate strong and tailored CPLE.

19.
Oncogene ; 40(11): 2018-2034, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33603168

RESUMO

Recurrent breast cancer presents significant challenges with aggressive phenotypes and treatment resistance. Therefore, novel therapeutics are urgently needed. Here, we report that murine recurrent breast tumor cells, when compared with primary tumor cells, are highly sensitive to ferroptosis. Discoidin Domain Receptor Tyrosine Kinase 2 (DDR2), the receptor for collagen I, is highly expressed in ferroptosis-sensitive recurrent tumor cells and human mesenchymal breast cancer cells. EMT regulators, TWIST and SNAIL, significantly induce DDR2 expression and sensitize ferroptosis in a DDR2-dependent manner. Erastin treatment induces DDR2 upregulation and phosphorylation, independent of collagen I. Furthermore, DDR2 knockdown in recurrent tumor cells reduces clonogenic proliferation. Importantly, both the ferroptosis protection and reduced clonogenic growth may be compatible with the compromised YAP/TAZ upon DDR2 inhibition. Collectively, these findings identify the important role of EMT-driven DDR2 upregulation in recurrent tumors in maintaining growth advantage but activating YAP/TAZ-mediated ferroptosis susceptibility, providing potential strategies to eradicate recurrent breast cancer cells with mesenchymal features.


Assuntos
Neoplasias da Mama/genética , Receptor com Domínio Discoidina 2/genética , Ferroptose/genética , Recidiva Local de Neoplasia/genética , Animais , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação Neoplásica da Expressão Gênica/genética , Via de Sinalização Hippo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Recidiva Local de Neoplasia/patologia , Proteínas Nucleares/genética , Fosforilação , Piperazinas/farmacologia , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteína 1 Relacionada a Twist/genética
20.
Angew Chem Int Ed Engl ; 60(11): 6124-6129, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33471365

RESUMO

A photocatalyst system is generally comprises a catalyst and cocatalyst to achieve light absorption, electron-hole separation, and surface reaction. It is a challenge to develop a single photocatalyst having all functions so as to lower the efficiency loss. Herein, the active GaN4 site is integrated into a polymeric carbon nitride (CN) photocatalyst (GCN), which displays an excellent H2 production rate of 9904 µmol h-1 g-1 . It is 162 and 3.3 times higher than that of CN with the absence (61 µmol h-1 g-1 ) and presence (2981 µmol h-1 g-1 ), respectively, of 1.0 wt % Pt. Under light irradiation the electron is injected and stored at the GaN4 site, where the LUMO locates. The HOMO distributes on the aromatic ring resulting in spatial charge separation. Transient photovoltage discloses the electron-storage capability of GCN. The negative GaN4 promotes proton adsorption in the excited state. The positive adsorption energy drives H2 desorption from GaN4 after passing the electron to the proton. This work opens up opportunities for exploring a novel catalyst for H2 production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...