Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169171, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38072261

RESUMO

This study aims to investigate the effect of microbial role distribution in microbial carbon pumps on dissolved organic matter (DOM) humification during rice straw composting with microbial inoculation. Three composting groups were designed, named CK (control), B4 (with Bacillus subtilis, OR058594) and Z1 (with Aspergillus fumigatus, AF202956.1). As a result of inoculation, the composition of microbial communities was changed, so that the microorganisms that promoted DOM humification were concentrated in the responders in the microbial carbon pump. DOM was divided into three components in three composting treatments: C1, C2 and C3. After inoculation with Bacillus subtilis, the C2 component was significantly affected, while after inoculation with Aspergillus fumigatus, the C3 component was significantly affected. The results of physicochemical factors affecting the transformation of DOM fluorescence components indicated that C1, C2 and C3 were related to the abundance of the cellulose-degrading enzyme-encoding gene GH7 in CK and B4 composting. However, the C2 was susceptible to organic matter in Z1 composting. This study explored the distribution of microbial communities from a new perspective, which provided new information for analyzing DOM humification and treating agricultural straws to achieve clean conditions for environmental friendliness.


Assuntos
Compostagem , Oryza , Substâncias Húmicas/análise , Matéria Orgânica Dissolvida , Bacillus subtilis , Carbono , Solo
2.
Bioresour Technol ; 381: 129109, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37169202

RESUMO

The study aims to clarify the driving factors of lignocellulose degrading enzyme genes abundance during rice straw composting. Lignocellulose degrading strains b4 (Bacillus subtilis), z1 (Aspergillus fumigatus) were inoculated into pure culture, respectively. Meanwhile, three rice straw composting groups were set up, named CK (control), B4 (inoculating b4) and Z1 (inoculating z1). Results confirmed the composition of functional genes related to lignocellulose metabolism for strains. Lignocellulose degrading enzyme genes abundance was up-regulated by inoculation, which promoted the decomposition of lignocellulose. Modular microorganisms, such as Actinobacteria, Proteobacteria, Ascomycetes and Basidiomycetes, were identified as driving factors that affected lignocellulose degrading enzyme genes abundance. pH, organic matter and soluble sugar content affected lignocellulose degrading enzyme genes abundance by affecting modular microorganisms. In addition, a potential priming effect was put forward based on the driving factors. This study provided theoretical guidance for regulating the abundance of lignocellulose degrading enzyme genes to promote lignocellulose degradation.


Assuntos
Compostagem , Microbiota , Oryza , Solo , Oryza/genética , Oryza/metabolismo , Lignina/metabolismo , Bacillus subtilis/metabolismo , Esterco/microbiologia
3.
Waste Manag ; 150: 20-29, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35785624

RESUMO

As a kind of livestock manure, chicken manure (CM) was rich in organic matter and microorganisms. However, a large amount of foul gas discharged by its random stacking not only threatened the environment, but also caused harm to human health. In view of the serious carbon loss and the unclear action mechanism of microbial community on carbon metabolism during CM composting, the effect of adding regulators on the sequestration of organic carbon was explored. Therefore, the purpose of this study was to explore the regulation mechanism of adding tricarboxylic acid cycle (TCA cycle) regulators on the core carbon metabolism pathway during CM composting. The results showed that the adenosine triphosphate (ATP) and malonic acid (MA) slowed down organic carbon degradation, resulting in lower carbon loss rate, which were 64.99% (CK), 62.35% (MA), and 61.26% (ATP) in each treatment. By comparing the abundance and structure of the carbon-related bacterial communities in different treatments, it was found that adding ATP and MA not only reduced the bacterial community abundance, but also tended to be similar in bacterial community composition. Moreover, the microbial specificity related to carbon metabolism pathway was enhanced, while the related gene expression and gene abundance were weakened. The regulation of TCA cycle metabolism pathway was confirmed to be the main way to improve organic carbon content. These findings revealed the positive effects of ATP and MA on carbon fixation from the perspective of gene metabolism.


Assuntos
Compostagem , Trifosfato de Adenosina , Animais , Bactérias , Carbono , Sequestro de Carbono , Galinhas , Ciclo do Ácido Cítrico , Humanos , Esterco , Solo
4.
Bioresour Technol ; 357: 127362, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35618190

RESUMO

This study aimed to explore the main pathway of humic acid (HA) formation during the thermophilic phase (TP) of aerobic fermentation, clarify the contribution of Maillard reaction. These experiments were carried out on cow dung, chicken manure and rice straw. Results indicated that the maximum temperature reached 60.2℃ during TP led to a sharp decrease in microbial abundance, while the production of HA increased. The network analysis indicated that microorganisms did not participate in the formation of HA and may be dominated by abiotic pathways. In addition, proteins and sugars were consumed at the highest rate during TP, and the trends were similar to HA formation. These findings suggested that the formation of HA has relationship to Maillard reaction, because TP provided suitable reaction conditions for Maillard reaction. Therefore, these results elucidated the contribution of Maillard reaction in HA formation during TP, and provided theoretical support for directional humification.


Assuntos
Compostagem , Substâncias Húmicas , Fermentação , Substâncias Húmicas/análise , Reação de Maillard , Esterco , Solo
5.
Chemosphere ; 286(Pt 1): 131635, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34346339

RESUMO

Composting is a biodegradation and transformation process that converts lignocellulosic biomass into value-added products, such as humic substances (HSs). However, the recalcitrant nature of lignocellulose hinders the utilization of cellulose and hemicellulose, decreasing the bioconversion efficiency of lignocellulose. Pretreatment is an essential step to disrupt the structure of lignocellulosic biomass. Many pretreatment methods for composting may cause microbial inactivation and death. Thus, the pretreatment methods suitable for composting can promote the degradation and transformation of lignocellulosic biomass. Therefore, this review summarizes the pretreatment methods suitable for composting. Microbial consortium pretreatment, Fenton pretreatment and surfactant-assisted pretreatment for composting may improve the bioconversion process. Microbial consortium pretreatment is a cost-effective pretreatment method to enhance HSs yields during composting. On the other hand, the efficiency of enzyme production during composting is very important for the degradation of lignocellulose, whose action mechanism is unknown. Therefore, this review describes the mechanism of action of lignocellulase, the predominant microbes producing lignocellulase and their related genes. Finally, optimizing pretreatment conditions and increasing enzymatic hydrolysis to improve the quality of composts by controlling suitable microenvironmental factors and core target microbial activities as a research focus in the bioconversion of lignocellulose during composting in the future.


Assuntos
Compostagem , Biomassa , Celulose , Lignina
6.
Bioresour Technol ; 344(Pt A): 126198, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34710605

RESUMO

The main purpose of this study was to explore the effects of Fenton pretreatment combined with bacterial inoculation on humification characteristics of dissolved organic matter (DOM) during rice straw composting. Three treatment groups (Fenton pretreatment: FeW, Fenton pretreatment and bacterial inoculation: FeWI, control: CK) were carried out during composting. The results showed that total organic carbon concentration of DOM and HIX showed an increase trend in all treatments in the composting process. The fungi that affect DOM conversion showed remarkable effects, meanwhile, fungal numbers of influencing DOM conversion were higher for FeWI than CK and FeW. The contribution rate of fungi to DOM was greater than that of environmental factors in FeWI composting, while environmental factors accounted for a large proportion in FeW and CK composting. This study exhibits referential significance for the effective degradation of agricultural wastes.


Assuntos
Compostagem , Oryza , Agricultura , Matéria Orgânica Dissolvida , Solo
7.
Sci Total Environ ; 806(Pt 4): 151376, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740666

RESUMO

The aims of this article were to study the effect of Fenton pretreatment and bacterial inoculation on cellulose-degrading genes and fungal communities during rice straw composting. The rice straw was pretreated by Fenton reactions and functional bacterial agents were then inoculated during the cooling phase of composting. Three treatment groups were carried out, the control (CK), Fenton pretreatment (FeW) and Fenton pretreatment and bacterial inoculation (FeWI). The results indicated that Fenton pretreatment and bacterial inoculation changed the fungal communities composition and increased fungal diversity, leading to changes in the cellulose-degrading genes. In addition, a network analysis showed that in the FeWI treatment, the fungi from modules 1, 5 and 8 were core hosts of the cellulose-degrading genes driving the cellulosic degradation. Moreover, Fenton pretreatment and bacterial inoculation changed the core module fungal communities and strengthened the correlation between the core fungi and the cellulose-degrading genes, thereby promoting cellulosic degradation. Based on redundancy and structural equation model analyses, the NH4+-N, TOC, pH and Shannon index were important factors influencing the variations in the cellulose-degrading genes. This study provides a foundation for cellulosic degradation during cellulosic waste composting.


Assuntos
Compostagem , Micobioma , Oryza , Celulose , Solo
8.
Bioresour Technol ; 337: 125403, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34147772

RESUMO

The aims of this study were to identify the driving factors of humic acid (HA) during rice straw composting based on Fenton pretreatment with bacterial inoculation. Rice straw was pretreated by Fenton reactions and then inoculated during composting, which was set up CK (control), FeW (Fenton pretreatment) and FeWI (Fenton pretreatment + functional bacterial agents). Results indicated that Fenton pretreatment and inoculation of functional bacteria increased the concentration of HA components, which was due to that bacterial composition was changed and bacterial diversity was decreased. Moreover, Fenton pretreatment and inoculation of functional bacteria increased the bacterial amounts of shikimic acid metabolism genes and the correlation between HA components and shikimic acid metabolism genes. Therefore, the functional bacteria were core driving factors, and NH4--N, pH, cellulose and bacterial diversity as key environmental factors to promote the formation of HA components.


Assuntos
Compostagem , Oryza , Celulose , Substâncias Húmicas/análise , Solo
9.
Bioresour Technol ; 303: 122849, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32035389

RESUMO

The goal of this work was to explore the effect of Fenton pretreatment combined with bacteria inoculation on the formation of humic substances (HS) during rice straw composting. In this study, the compound bacterial agents were inoculated after Fenton pretreatment during rice straw composting. The results suggested that the coupling effects of Fenton pretreatment and bacteria inoculation promoted the humification process, which might be the reason of organic fractions degradation and transformation. In addition, the bacterial communities structure and diversity were changed by Fenton pretreatment and inoculation. Key microbial genera linking to the transformation of organic fractions were determined by network analysis. Redundancy analysis and structural equation model analysis indicated that Fenton pretreatment, inoculation, amino acid, soluble sugar and beta-diversity as the key factors affecting organic fractions transformation during composting. Therefore, the combined application Fenton pretreatment with bacteria inoculation provided a new method to promote the HS amount.


Assuntos
Compostagem , Oryza , Bactérias , Biomassa , Substâncias Húmicas , Lignina , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...