Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Funct Plant Biol ; 48(8): 743-754, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33663680

RESUMO

Lignin is a natural polymer interlaced with cellulose and hemicellulose in secondary cell walls (SCWs). Auxin acts via its signalling transduction to regulate most of plant physiological processes. Lignification responds to auxin signals likewise and affects the development of anther and secondary xylem in plants. In this review, the research advances of AUXIN RESPONSE FACTOR (ARF)-dependent signalling pathways regulating lignin formation are discussed in detail. In an effort to facilitate the understanding of several key regulators in this process, we present a regulatory framework that comprises protein-protein interactions at the top and protein-gene regulation divided into five tiers. This characterises the regulatory roles of auxin in lignin biosynthesis and links auxin signalling transduction to transcriptional cascade of lignin biosynthesis. Our works further point to several of significant problems that need to be resolved in the future to gain a better understanding of the underlying mechanisms through which auxin regulates lignin biosynthesis.


Assuntos
Ácidos Indolacéticos , Lignina , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Xilema/metabolismo
2.
Plant Sci ; 298: 110562, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32771163

RESUMO

Sapium sebiferum (L.) Roxb. plays an important role in traditional Chinese medicine and is one of major woody oil tree in China. Phospholipid: diacylglycerol acyltransferase 1 (PDAT1), as an important catalytic enzyme for the formation of triacylglycerol (TAG), is mainly responsible for the transfer of an acyl group from the sn-2 position of phospholipids to the sn-3 position of sn-1, 2-diacylglycerol (DAG) to produce TAG and sn-1 lysophospholipids. The importance of PDAT1 in triacylglycerol biosynthesis has been illustrated in previous research, and at least 67 PDAT1 sequences have been identified from 31 organisms. However, little is known about the gene encoding PDAT1 in S. sebiferum (SsPDAT1), which is involved in seed oil biosynthesis. To explore the functional characteristics of SsPDAT1, we cloned and analyzed the full-length cDNA in the coding region of SsPDAT1, which consists of 2040 bp and encodes a putative protein of 680 amino acid (aa) residues. Thin-layer chromatography (TLC) analysis showed that recombinant SsPDAT1 could restore TAG accumulation in TAG-deficient mutant yeast (Saccharomyces cerevisiae) H1246, which revealed the enzyme activity of SsPDAT1. Moreover, transgenic Brassica napus L. W10 plants overexpressing SsPDAT1 showed significant increases of 19.6-28.9 % in linoleic acid levels but decreases of 27.3-37.1 % in linolenic acid. Furthermore, the total oil content increased by 8.1 %-10.8 % in SsPDAT1 transgenic seeds. These results confirmed the role of SsPDAT1 in stabilizing oil biosynthesis and suggested that SsPDAT1 could be exploitable to specifically regulate the oil composition of plants. These experimental results provide a new concept that may enable the industrial development of plants with high-linoleic-acid oil through overexpression of SsPDAT1 in S. sebiferum L.


Assuntos
Diacilglicerol O-Aciltransferase/genética , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Fosfolipídeos/genética , Proteínas de Plantas/genética , Sapium/genética , Sequência de Aminoácidos , Diacilglicerol O-Aciltransferase/metabolismo , Fosfolipídeos/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
3.
Funct Plant Biol ; 47(7): 577-591, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32438974

RESUMO

Rapid response of uni- and multicellular organisms to environmental changes and their own growth is achieved through a series of molecular mechanisms, often involving modification of macromolecules, including nucleic acids, proteins and lipids. The ADP-ribosylation process has ability to modify these different macromolecules in cells, and is closely related to the biological processes, such as DNA replication, transcription, signal transduction, cell division, stress, microbial aging and pathogenesis. In addition, tRNA plays an essential role in the regulation of gene expression, as effector molecules, no-load tRNA affects the overall gene expression level of cells under some nutritional stress. KptA/Tpt1 is an essential phosphotransferase in the process of pre-tRNA splicing, releasing mature tRNA and participating in ADP-ribose. The objective of this review is concluding the gene structure, the evolution history and the function of KptA/Tpt1 from prokaryote to eukaryote organisms. At the same time, the results of promoter elements analysis were also shown in the present study. Moreover, the problems in the function of KptA/Tpt1 that have not been clarified at the present time are summarised, and some suggestions to solve those problems are given. This review presents no only a summary of clear function of KptA/Tpt1 in the process of tRNA splicing and ADP-ribosylation of organisms, but also gives some proposals to clarify unclear problems of it in the future.


Assuntos
Proteínas de Saccharomyces cerevisiae , NAD , Fosfotransferases (Aceptor do Grupo Álcool) , RNA de Transferência , Saccharomyces cerevisiae/genética
4.
Funct Plant Biol ; 47(3): 185-194, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31968206

RESUMO

WRINKLED 1 (WRI1), a member of the AP2/EREBP class of transcription factors, regulates carbon allocation between the glycolytic and fatty acid biosynthetic pathways and plays important roles in other biological events. Previous studies have suggested that post-translational modifications and interacting partners modulate the activity of WRI1. We systematically summarised the structure of WRI1 as well as its molecular interactions during transcription and translation in plants. This work elucidates the genetic evolution and regulatory functions of WRI1 at the molecular level and describes a new pathway involving WRI1 that can be used to produce triacylglycerols (TAGs) in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ácidos Graxos , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...