Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 9(17): 5451-5457, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28401232

RESUMO

Herein, we have developed a facile and effective approach for synthesizing a novel kind of porous nitrogen-doped carbon-coated MnO nanosphere. The porous Mn2O3 nanospheres are initially obtained by the calcination treatment of a coordination self-assembled aggregation precursor (referred to as Mn(OAc)2-C-8). Then, MnO@N-doped carbon composites (MnO@NCs) are obtained by the calcination of the Mn2O3 nanospheres coated with polydopamine (Mn2O3@PDA). The MnO@NCs are evaluated as an anode for lithium ion batteries (LIBs), which exhibit high specific capacity, stable cycling performance (1096.6 mA h g-1 after 100 cycles at 100 mA g-1) and high coulombic efficiency (about 99% over 100 cycles). The unique structure design and synergistic effect not only settle the challenges of low conductivity and poor cycling stability of transition metal oxides but also resolve the imperfection of inferior specific capacity of traditional graphite materials. Importantly, it may provide a commendable conception for developing new-fashioned anode materials to improve the lithium storage capability and electrochemical performance.

2.
Dalton Trans ; 45(34): 13509-13, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27503555

RESUMO

In this study, we describe a rapid and environmentally friendly synthesis of bare Co3O4 nanocrystals derived from Co(ii) oleate complexes by calcination treatment. When directly used as anode materials for lithium-ion batteries (LIBs), the as-prepared nanocrystals could deliver a high reversible capacity of 980 mA h g(-1) after 250 cycles at a current density of 100 mA g(-1) and excellent cycling performance, which may be beneficial to promote the further development of the next generation of lithium ion batteries. The synthetic route can offer great advantages for the flash preparation of other metal oxide nanocrystals for energy storage application.

3.
Nanoscale ; 8(5): 2967-73, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26781747

RESUMO

In this work, a one-dimensional Co3O4@TiO2 core-shell electrode material with superior electrochemical performance is fabricated by a convenient and controllable route. The approach involves two main steps: the homogeneous deposition of polydopamine and TiO2 layers in sequence on the cobalt coordination polymer and the thermal decomposition of the polymer matrix. The as-prepared electrode material can achieve excellent electrochemical properties and stability as an anode material for lithium ion batteries, such as a high specific capacity of 1279 mA h g(-1), good cycling stability (around 803 mA h g(-1) at a current density of 200 mA g(-1) after 100 cycles), and stable rate performance (around 520 mA h g(-1) at a current density of 1000 mA g(-1)). This dramatic electrochemical performance is mainly attributed to the excellent structural characteristics, which could improve the electrical conductivity and lithium ion mobility, as well as electrolyte permeability and architectural stability during cycling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...