Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008833

RESUMO

Nitrosobenzene (PhNO) and phenylhydroxylamine (PhNHOH) are of paramount importance because of their involvement as crucial intermediates in the biological metabolism and catalytic transformation of nitrobenzene (PhNO2) to aniline (PhNH2). However, a complete reductive transformation cycle of PhNO to PhNH2 via the PhNHOH intermediate has not been reported yet. In this context, we design and construct a new thiolate-bridged dicobalt scaffold that can accomplish coordination activation and reductive transformation of PhNO. Notably, an unprecedented reversible ligand-based redox sequence PhNO0 ↔ PhNO•- ↔ PhNO2- can be achieved on this well-defined {CoIII(µ-SPh)2CoIII} functional platform. Further detailed reactivity investigations demonstrate that the PhNO0 and PhNO•- complexes cannot react with the usual hydrogen and hydride donors to afford the corresponding phenylhydroxylamino (PhNHO-) species. However, the double reduced PhNO2- complex can readily undergo N-protonation with an uncommon weak proton donor PhSH to selectively yield a stable dicobalt PhNHO- bridged complex with a high pKa value of 13-16. Cyclic voltammetry shows that there are two successive reduction events at E1/2 = -0.075 V and Ep = -1.08 V for the PhNO0 complex, which allows us to determine both bond dissociation energy (BDEN-H) of 59-63 kcal·mol-1 and thermodynamic hydricity (ΔGH-) of 71-75 kcal·mol-1 of the PhNHO- complex. Both values indicate that the PhNO•- complex is not a potent hydrogen abstractor and the PhNO0 complex is not an efficient hydride acceptor. In the presence of BH3 as a combination of protons and electrons, facile N-O bond cleavage of the coordinated PhNHO- group can be realized to generate PhNH2 and a dicobalt hydroxide-bridged complex. Overall, we present the first stepwise reductive sequence, PhNO0 ↔ PhNO•- ↔ PhNO2- ↔ PhNHO- → PhNH2.

2.
J Am Chem Soc ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843049

RESUMO

The development of a catalytic method for stereogenic carbon center formation holds immense significance in organic synthesis. Transition-metal-catalyzed cross-coupling reaction has been regarded as a straightforward and efficient tool for stereoselectively forging C-C bond. Nevertheless, the creation of acyclic all-carbon quaternary-containing vicinal stereocenters remains notoriously challenging within the domain of cross-coupling chemistry despite their prominence in various bioactive small molecules. Herein, we describe a palladium-catalyzed asymmetric multicomponent cross-coupling of trisubstituted alkene with aryl diazonium salts and arylboronic acids to realize the formation of tertiary-quaternary carbon centers with high regio-, distereo-, and enantioselectivity. Specifically, the precise manipulation of the stereoconfiguration of trisubstituted alkenes enables the divergent stereoselective cross-coupling reaction, thus allowing for the facile construction of all four enantiomers. Harnessing the ligand-swap strategy involving a chiral bisoxazoline and an achiral fumarate individually accelerates the enantioselective migratory insertion and reductive elimination step in the cross-coupling process, as supported by density functional theory (DFT) calculations, thus obviating the requirement for a neighboring directing group within the internal olefin skeleton.

3.
Acc Chem Res ; 57(13): 1761-1776, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38861704

RESUMO

ConspectusBiological nitrogen fixation mediated by nitrogenases has garnered significant research interest due to its critical importance to the development of efficient catalysts for mild ammonia synthesis. Although the active center of the most studied FeMo-nitrogenases has been determined to be a complicated [Fe7S9MoC] hetero-multinuclear metal-sulfur cluster known as the FeMo-cofactor, the exact binding site and reduction pathway of N2 remain a subject of debate. Over the past decades, the majority of studies have focused on mononuclear molybdenum or iron centers as potential reaction sites. In stark contrast, cooperative activation of N2 through bi- or multimetallic centers has been largely overlooked and underexplored, despite the renewed interest sparked by recent biochemical and computational studies. Consequently, constructing bioinspired bi- or multinuclear metallic model complexes presents an intriguing yet challenging prospect. In this Account, we detail our long-standing research on the design and synthesis of novel thiolate-bridged diiron complexes as nitrogenase models and their application to chemical simulations of potential biological N2 reduction pathways.Inspired by the structural and electronic features of the potential diiron active center in the belt region of the FeMo-cofactor, we have designed and synthesized a series of new thiolate-bridged diiron nitrogenase model complexes, wherein iron centers with +2 or +3 oxidation states are coordinated by Cp* as carbon-based donors and thiolate ligands as sulfur donors. Through the synergistic interaction between the two iron centers, unstable diazene (NH═NH) species can be trapped to generate the first example of a [Fe2S2]-type complex bearing a cis-µ-η1:η1-NH═NH subunit. Significantly, this species can not only catalyze the reductive N-N bond cleavage of hydrazine to ammonia but also trigger a stepwise reduction sequence NH═NH → [NH2-NH]- → [NH]2-(+NH3) → [NH2]- → NH3. Furthermore, an unprecedented thiolate-bridged diiron µ-nitride featuring a bent Fe-N-Fe moiety was successfully isolated and structurally characterized. Importantly, this diiron µ-nitride can undergo successive proton-coupled electron transfer processes to efficiently release ammonia in the presence of separate protons and electrons and can even be directly hydrogenated using H2 as a combination of protons and electrons for high-yield ammonia formation. Based on combined experimental and computational studies, we proposed two distinct reductive transformation sequences on the diiron centers, which involve a series of crucial NxHy intermediates. Moreover, we also achieved catalytic N2 reduction to silylamines with [Fe2S2]-type complexes by ligand modulation.Our bioinspired diiron cooperative scaffold may provide a suitable model for probing the potential N2 stepwise reduction pathways from the molecular level. Different from the traditional alternating and distal pathways dominated by mononuclear iron or molybdenum complexes, our proposed alternating transformation route based on the diiron centers may not involve the N2H4 intermediate, and the convergence point of the alternating and terminal pathways is imide, not amide. Our research strategy could inform the design and development of new types of bioinspired catalysts for mild and efficient nitrogen reduction in the future.

4.
Chem Sci ; 15(23): 8880-8887, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38873056

RESUMO

An unprecedented and straightforward route for the asymmetric construction of privileged atroposelective bridged (hetero)biaryl eight-membered scaffolds has been accomplished through chiral phosphoric acid catalyzed asymmetric intramolecular [3 + 2] cycloaddition of innovative (hetero)biaryl aldehydes with 3-aminooxindole hydrochlorides. A class of eight-membered bridged (hetero)biaryl lactones fused to spiro[pyrrolidine-oxindole] derivatives, possessing both chiral C-C/C-N axes and multiple contiguous stereocenters, were obtained in good yields with excellent enantioselectivities and diastereoselectivities in one step through this direct strategy. In addition, the good scalability and derivatization of the title compounds demonstrated their synthetic utility.

5.
Org Biomol Chem ; 22(21): 4254-4263, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38738921

RESUMO

Construction of axially chiral arylpyrazoles represents an attractive challenge due to the relatively low rotational barrier of biaryl structures containing five-membered heterocycles. This work describes the catalytic asymmetric construction of axially chiral arylpyrazoles using 5-aminopyrazoles and naphthoquinone derivatives. The chiral axis could be formed through a central-to-axial chirality relay step of the chiral phosphoric acid-catalyzed arylation reaction, which features excellent yields and enantioselectivities with a broad substrate scope under mild reaction conditions.

6.
Bioorg Chem ; 148: 107453, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761708

RESUMO

Thirty-five trifluoromethyl hydrazones and seventeen trifluoromethyl oxime esters were designed and synthesized via molecular hybridization. All the target compounds were initially screened for in vitro anti-inflammatory activity by assessing their inhibitory effect on NO release in LPS-stimulated RAW264.7 cells, and the optimal compound was finally identified as 2-(3-Methoxyphenyl)-N'-((6Z,9Z,12Z,15Z)-1,1,1-trifluorohenicosa-6,9,12,15-tetraen-2-ylidene)acetohydrazide (F26, IC50 = 4.55 ± 0.92 µM) with no cytotoxicity. Moreover, F26 potently reduced the production of PGE2 in LPS-stimulated RAW264.7 cells compared to indomethacin. The interaction of F26 with COX-2 and cPLA2 was directly verified by the CETSA technique. F26 was found to modulate the phosphorylation levels of p38 MAPK and NF-κB p65, as well as the protein expression of IκB, cPLA2, COX-2, and iNOS in LPS-stimulated rat peritoneal macrophages. Additionally, F26 was observed to prevent the nuclear translocation of NF-κB p65 in LPS-stimulated rat peritoneal macrophages by immunofluorescence localization. Therefore, the aforementioned in vitro experiments demonstrated that F26 blocked the p38 MAPK and NF-κB pathways by binding to COX-2 and cPLA2. In the adjuvant-induced arthritis model, F26 demonstrated a significant effect in preventing arthritis symptoms and inflammatory status in rats, exerting an immunomodulatory role by regulating the homeostasis between Th17 and Treg through inhibition of the p38 MAPK/cPLA2/COX-2/PGE2 and NF-κB pathways. Encouragingly, F26 caused less acute ulcerogenicity in rats at a dose of 50 mg/kg compared to indomethacin. Overall, F26 is a promising candidate worthy of further investigation for treating inflammation and associated pain with lesser gastrointestinal irritation, as well as other symptoms in which cPLA2 and COX-2 are implicated in the pathophysiology.


Assuntos
Artrite Reumatoide , Inibidores de Ciclo-Oxigenase 2 , Ciclo-Oxigenase 2 , Animais , Camundongos , Ciclo-Oxigenase 2/metabolismo , Artrite Reumatoide/tratamento farmacológico , Células RAW 264.7 , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/síntese química , Ratos , Relação Estrutura-Atividade , Estrutura Molecular , Inflamação/tratamento farmacológico , Masculino , Relação Dose-Resposta a Droga , Cetonas/química , Cetonas/farmacologia , Cetonas/síntese química , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/síntese química , Fosfolipases A2/metabolismo , Administração Oral , Ratos Sprague-Dawley
7.
J Am Chem Soc ; 146(12): 7971-7978, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38483538

RESUMO

We describe a nickel-catalyzed carbonylative cross-coupling of unactivated secondary alkyl electrophiles with the organozinc reagent at atmospheric CO gas, thus allowing the expedient construction of unsymmetric dialkyl ketones with broad functional group tolerance. The leverage of a newly developed NN2-pincer type ligand enables the chemoselective three-component carbonylation by overcoming the competing Negishi coupling, the undesired ß-hydride elimination, and dehalogenation of alkyl iodides side pathways. Both alkyl iodides and alkyl tosylates are compatible in the single electron transfer involved mechanism.

8.
Org Biomol Chem ; 22(12): 2380-2383, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38436087

RESUMO

A nickel-catalyzed acylation of vinylpyridines with CO at atmospheric pressure is reported, allowing for an expedient approach to synthesize ß-acyl pyridine derivatives with high regio- and chemoselectivity. The electron-withdrawing property of pyridine plays pivotal roles in activating the alkenyl group, thereby facilitating this carbonylative process. In addition to vinylpyridines, other alkenylheterocycles such as thiazole and quinoline were also suitable for this method.

9.
Angew Chem Int Ed Engl ; 63(25): e202318991, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38252658

RESUMO

ß-Tertiary amino acid derivatives constitute one of the most frequently occurring units in natural products and bioactive molecules. However, the efficient asymmetric synthesis of this motif still remains a significant challenge. Herein, we disclose a cobalt-catalyzed enantioselective reductive addition reaction of ketimine using α-chloro carbonyl compound as a radical precursor, providing expedient access to a diverse array of enantioenriched ß-quaternary amino acid analogues. This protocol exhibits outstanding enantioselectivity and broad substrate scope with excellent functional group tolerance. Preliminary mechanism studies rule out the possibility of Reformatsky-type addition and confirm the involvement of radical species in stereoselective addition process. The synthetic utility has been demonstrated through the rapid assembly of iterative amino acid units and oligopeptide, showcasing its versatile platform for late-stage modification of drug candidates.

10.
Angew Chem Int Ed Engl ; 63(7): e202316012, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38164694

RESUMO

Chromium-catalyzed enantioselective Nozaki-Hiyama-Kishi (NHK) reaction represents one of the most powerful approaches for the formation of chiral carbon-heteroatom bond. However, the construction of sterically encumbered tetrasubstituted stereocenter through NHK reaction still posts a significant challenge. Herein, we disclose a cobalt-catalyzed aza-NHK reaction of ketimine with alkenyl halide to provide a convenient synthetic approach for the manufacture of enantioenriched tetrasubstituted α-vinylic amino acid. This protocol exhibits excellent functional group tolerance with excellent 99 % ee in most cases. Additionally, this asymmetric reductive method is also applicable to the aldimine to access the trisubstituted stereogenic centers.

11.
Eur J Med Chem ; 267: 116176, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38286094

RESUMO

A series of NSAIDs hybrid molecules were synthesized and characterized, and their ability to inhibit NO release in LPS-induced RAW264.7 macrophages was evaluated. Most of the compounds showed significant anti-inflammatory activity in vitro, of which (2E,6Z,9Z,12Z,15Z)-1,1,1-trifluorohenicosa-2,6,9,12,15-pentaen-2-yl 2-(4-benzoylphenyl) propanoate (VI-60) was the most optimal (IC50 = 3.85 ± 0.25 µΜ) and had no cytotoxicity. In addition, VI-60 notably reduced the production of PGE2 in LPS-stimulated RAW264.7 cells compared to ketoprofen. Futhur more, VI-60 significantly inhibited the expression of iNOS, cPLA2, and COX-2 and the phosphorylation of p38 MAPK in LPS-stimulated RAW264.7 cells. The binding of VI-60 to cPLA2 and COX-2 was directly verified by the CETSA technique. In vivo studies illustrated that VI-60 exerted an excellent therapeutic effect on adjuvant-induced arthritis in rats by regulating the balance between Th17 and Treg through inhibiting the p38 MAPK/cPLA2/COX-2/PGE2 pathway. Encouragingly, VI-60 showed a lower ulcerative potential in rats at a dose of 50 mg/kg compared to ketoprofen. In conclusion, the hybrid molecules of NSAIDs and trifluoromethyl enols are promising candidates worthy of further investigation for the treatment of inflammation, pain, and other symptoms in which cPLA2 and COX-2 play a role in their etiology.


Assuntos
Artrite Reumatoide , Cetoprofeno , Ratos , Animais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2 , Lipopolissacarídeos/farmacologia , Artrite Reumatoide/tratamento farmacológico , NF-kappa B/metabolismo
12.
Nat Chem ; 16(3): 398-407, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38082178

RESUMO

Unnatural chiral α-tertiary amino acids containing two different carbon-based substituents at the α-carbon centre are widespread in biologically active molecules. This sterically rigid scaffold is becoming a growing research interest in drug discovery. However, a robust protocol for chiral α-tertiary amino acid synthesis remains scarce due to the challenge of stereoselectively constructing sterically encumbered tetrasubstituted stereogenic carbon centres. Herein we report a cobalt-catalysed enantioselective aza-Barbier reaction of ketimines with various unactivated alkyl halides, including alkyl iodides, alkyl bromides and alkyl chlorides, enabling the formation of chiral α-tertiary amino esters with a high level of enantioselectivity and excellent functional group tolerance. Primary, secondary and tertiary organoelectrophiles are all tolerated in this asymmetric reductive addition protocol, which provides a complementary method for the well-exploited enantioselective nucleophilic addition with moisture- and air-sensitive organometallic reagents. Moreover, the three-component transformation of α-ketoester, amine and alkyl halide represents a formal asymmetric deoxygenative alkylamination of the carbonyl group.

13.
Nat Commun ; 14(1): 6960, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907542

RESUMO

Transition metal-catalyzed carbonylative reaction with CO gas are among the central task in organic synthesis, enabling the construction of highly valuable carbonyl compound. Here, we show an earth-abundant nickel-catalyzed three-component tandem acylzincation/cyclization sequence of allene and alkylzinc reagent with 1 atm of CO under mild conditions. This protocol is featured by broad functional group tolerance with high reaction selectivity, providing a rapid and convenient synthetic method for the construction of diverse fully substituted benzotropone derivatives. Mechanistic studies reveal that the installation of a cyano group tethered to allene moiety enables the high regio- and stereoselectivity of this acylzincation of allene, allowing the selective formation of three consecutive C-C bonds in a highly efficient manner.

14.
J Am Chem Soc ; 145(37): 20578-20587, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37674257

RESUMO

Transition metal nitrides have received considerable attention owing to their crucial roles in nitrogen fixation and nitrogen atom transfer reactions. Compared to the early and middle transition metals, it is much more challenging to access late transition metal nitrides, especially cobalt in group 9. So far, only a handful of cobalt nitrides have been reported; consequently, their hydrogenation reactivity is largely unexplored. Herein, we present a structurally and spectroscopically well-characterized thiolate-bridged dicobalt µ-nitride [Cp*CoIII(µ-SAd)(µ-N)CoIIICp*] (2) featuring a bent {CoIII(µ-N)CoIII} core. Remarkably, complex 2 can realize not only direct hydrogenation of nitride to amide but also stepwise N-H bond formation from nitride to ammonia. Specifically, 2 can facilely activate dihydrogen (H2) at mild conditions to generate a dicobalt µ-amide [Cp*CoII(µ-SAd)(µ-NH2)CoIICp*] (4) via an unusual mechanism of two-electron oxidation of H2 as proposed by computational studies; in the presence of protons (H+) and electrons, nitride 2 can convert to dicobalt µ-imide [Cp*CoIII(µ-SAd)(µ-NH)CoIIICp*][BPh4] (3[BPh4]) and to CoIICoII µ-amide 4, and finally release ammonia. In contrast to 2, the only other structurally characterized dicobalt µ-nitride Na(THF)4{[(ketguan)CoIII(N3)]2(µ-N)} (ketguan = [(tBu2CN)C(NDipp)2]-, Dipp = 2,6-diisopropylphenyl) (e) that possesses a linear {CoIII(µ-N)CoIII} moiety cannot directly react with H2 or H+. Further in-depth electronic structure analyses shed light on how the varying geometries of the {CoIII(µ-N)CoIII} moieties in 2 and e, bent vs linear, impart their disparate reactivities.

15.
Org Biomol Chem ; 21(35): 7173-7179, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37609939

RESUMO

An efficient squaramide-catalyzed asymmetric allylic alkylation of 4-aminopyrazolones with various MBH carbonates via different pathways has been described. This method provides access to a series of pyrazolone derivatives bearing a nitrogen-containing quaternary stereocenter in high yields with excellent enantioselectivities and regioselectivities under mild conditions. In addition, we utilized the target products to construct a range of bi-heterocyclic skeletons through [3 + 2] cycloadditions. These novel hybrid heterocycles would be promising candidates for drug-discovery programs and chemical biology.

16.
J Org Chem ; 88(14): 10190-10198, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37389982

RESUMO

A novel DMAP-catalyzed [4+3] spiroannulation of pyrazolone-derived Morita-Baylis-Hillman carbonates with N-(o-chloromethyl)aryl amides was developed. This reaction led to the assembly of medicinally relevant pyrazolone and azepine nuclei into a structurally new spirocyclic scaffold, and a diverse array of spiro[pyrazolone-azepine] products were afforded in good to excellent yields (up to 93%) with a wide substrate scope (23 examples) under mild conditions. Moreover, a gram-scale reaction and product transformations were conducted, which further increased the diversity of products.

17.
Molecules ; 28(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298754

RESUMO

The desymmetrization of N-pyrazolyl maleimides was realized through an asymmetric Michael addition by using pyrazolones under mild conditions, leading to the formation of a tri-N-heterocyclic pyrazole-succinimide-pyrazolone assembly in high yields with excellent enantioselectivities (up to 99% yield, up to 99% ee). The use of a quinine-derived thiourea catalyst was essential for achieving stereocontrol of the vicinal quaternary-tertiary stereocenters together with the C-N chiral axis. Salient features of this protocol included a broad substrate scope, atom economy, mild conditions and simple operation. Moreover, a gram-scale experiment and derivatization of the product further illustrated the practicability and potential application value of this methodology.


Assuntos
Pirazolonas , Tioureia , Estrutura Molecular , Maleimidas , Estereoisomerismo
18.
Molecules ; 28(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37049689

RESUMO

The concurrent construction of 1,3-stereocenters remains a challenge. Herein, we report the development of stereoselective union of a point chiral center with allenyl axial chirality in 1,3-position by Pd-catalyzed asymmetric allenylic alkylation between racemic allenyl carbonates and indanone-derived ß-ketoesters. Various target products bearing a broad range of functional groups were afforded in high yield (up to 99%) with excellent enantioselectivities (up to 98% ee) and good diastereoselectivities (up to 13:1 dr).

19.
Org Lett ; 25(6): 992-997, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36746651

RESUMO

Here we report a Pd-catalyzed isomerization of alicyclic allyl amine to achieve the unprecedented α,ß-difunctionalization of synthetically inaccessible trisubstituted cyclic enamine. The dual role of in situ formed enamine intermediate allows for the intermolecular formal [4 + 2] reaction with acrylamide or isatoic anhydride to simultaneously construct the C-C bond and C-N bond, thus realizing the expedient construction of [4.3.0]-aminal with excellent diastereoselectivity and high atom economy.

20.
Chem Asian J ; 18(1): e202201061, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36373896

RESUMO

Reported here is a nickel-catalyzed aminocarbonylation of aromatic iodides with (hetero)aryl anilines and alkyl amines under atmospheric CO pressure. The reaction features with broad substrate scope with excellent functional group tolerance, providing an expedient method for the construction of amide analogues. Notably, amino alcohols can be selectively transformed into the corresponding amides successfully without interfering the hydroxyl group under the current standard conditions.


Assuntos
Iodetos , Níquel , Catálise , Amidas , Aminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...