Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 344: 140406, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37827464

RESUMO

Metals-loaded (Fe3+, Cu2+ and Zn2+) activated carbons (M@AC) with different loading ratios (0.1%, 0.5%, 1%, 5% and 10%) were prepared and employed for catalytic degradation of dye model compounds (crystal violet (CV) and methyl orange (MO)) in wastewater by heterogeneous Fenton-like technique. Compared with Cu@AC and Zn@AC, 0.5% Fe3+ loaded AC (0.5Fe@AC) had better catalytic activity for dyes degradation. The effects of dyes initial concentration, catalyst dosage, pH and hydrogen peroxide (H2O2) volume on the catalytic degradation process were investigated. Cyclic performance, stability of 0.5Fe@AC and iron leaching were explored. Degradation kinetics were well fitted to the pseudo-second-order model (Langmuir-Hinshelwood). Almost complete decolorization (99.7%) of 400 mg L-1 CV was achieved after 30 min reaction under the conditions of CV volume (30 mL), catalyst dosage (0.05 g), H2O2 volume (1 mL) and pH (7.7). Decolorization of MO reached 98.2% under the same conditions. The abilities of pyrolysis char (PC) of dyeing sludge (DS) and metal loaded carbon to remove dye pollutants were compared. The intermediate products were analyzed and the possible degradation pathway was proposed. This study provided an insight into catalytic degradation of triphenylmethane- and aromatic azo-based substances, and utilization of sludge char.


Assuntos
Violeta Genciana , Esgotos , Peróxido de Hidrogênio/química , Compostos Azo/química , Metais , Corantes/química , Catálise
2.
Environ Res ; 214(Pt 2): 113837, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35810812

RESUMO

A furfural residue-derived activated carbon (AC) supported black-TiO2 photocatalyst was successfully prepared by ultrasonic-assisted sol-gel treatment (USG) and solvothermal treatment (ST) combined with microwave-assisted heating (MH). The prepared composites were characterized and evaluated based on the degradation of tetracycline hydrochloride (TC) under ultraviolet (UV) illumination. The average TiO2 nanoparticle size of the as-synthesized catalysts was between 9 and 11 nm. The bandgap of TiO2-USGM was 1.6 eV, much lower than that of other reference catalysts. Organic carbon and AC in the catalyst play positive roles in reducing the band gap (e.g. 1.6∼2.6 eV) and improving visible-light absorption. The oxygen vacancies are responsible for UV-visible absorption. Adding AC into black TiO2 resulted in a lower degree of recombination of photogenerated electrons. Mott-Schottky plots showed that AC-containing TiO2@AC-STM reduced the value of conduction band value from -0.59 eV to -0.24 eV, which is beneficial to photogenerated electrons. Compared with TiO2, the Ti-O-C and Ti-C- in TiO2@AC remarkably improved the adsorption and catalytic efficiency of TC. In a near-neutral pH environment, TiO2@AC-STM and TiO2@AC-USGM exhibited high removal efficiencies (88.0% and 75.7%, respectively) and degradation rates (0.0418 and 0.0302 µmol/g/s, respectively) at a catalyst load of 0.25 g/L. Notably, the catalyst can be effectively used over a wide range of pH (6-9). The solution pH after treatment was close to neutral, which is advantageous for wastewater treatment. The activation energies were found to be approximately 3.47 kJ/mol. The thermodynamic parameters showed that the photodegradation process was non-spontaneous and endothermic. Based on the trapping experiments, O2⋅- was mainly responsible for TC photodegradation over TiO2@AC-STM, followed by h+. The TC degradation pathways and catalyst stability were also investigated. Biomass-derived carbon-supported catalysts have great potential for waste biomass utilization as green, and low-cost catalysts.


Assuntos
Carvão Vegetal , Tetraciclina , Antibacterianos , Catálise , Carvão Vegetal/química , Calefação , Micro-Ondas , Fotólise , Titânio/química
3.
Sci Total Environ ; 838(Pt 2): 155412, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35569655

RESUMO

This study investigated the effect of temperature on pyrolysis of soapstock in a fluidized bed reactor, and the characterization of soapstock chars (SCs) and pyrolysis oils (POs) were analyzed. TGA, TG-FTIR, TG-MS, and Py-GCMS were employed to investigate characteristics of SS pyrolysis. Experimental results indicated that the yield of SC decreased with increasing temperature. Pyrolysis oil (PO) yield reached the maximum of 21.05 wt% at 600 °C and the yield of non-condensable gas varied with temperatures. The content of carbon, hydrogen and nitrogen distributed in the SC decreased with the increasing temperature, and sulfur tended to be retained in SC during pyrolysis with the distribution ratio of 0.55-0.62. Ketones, alcohols and hydrocarbons were the dominate substances in PO, and higher temperature promoted the production of short-chain alkanes and the conversion of alkenes to benzene derivatives. SS pyrolysis can be divided into three stages. Stage I was mainly the evaporation of free water and light organics in the raw material. Decomposition and conversion of organics mainly occurred at stage II. Stage III was the decomposition of CaCO3 and secondary cracking of residual organics. Ca2+ delayed the pyrolysis reaction of fatty acids and promoted decarboxylation which was the main deoxygenation pathway, and alkene production. This study provided a theoretical basis for the application of soapstock thermochemical treatment. It is of great significance for the quality improvement of PO and pollution control for pyrolysis processes.


Assuntos
Óleos de Plantas , Pirólise , Biocombustíveis , Temperatura Alta , Temperatura
4.
Sci Total Environ ; 806(Pt 4): 150903, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653460

RESUMO

Co-pyrolysis of sophora wood (SW) and polyvinyl chloride (PVC) was conducted in a microwave reactor at different temperatures and different mixing ratios, and the transformation and distribution of chlorine in pyrolysis products were investigated. Microwave pyrolysis is a simple and efficient technique with better heating uniformity and process controllability than conventional heating. Compared with PVC pyrolysis, the addition of SW significantly reduced CO2 yield and greatly increased the yield of CO. The yield and quality of pyrolysis oil were effectively improved by SW, and the content of chlorine-containing compounds in the oil was suppressed to <1% at low temperatures (<550 °C). Co-pyrolysis of SW and PVC reduced the chlorine emissions from 59.07% to 28.09% and promoted the retention of chlorine in char (from 0.33% to 4.72%). Cellulose, hemicellulose, and lignin were co-pyrolyzed with PVC to investigate their effects on chlorine distribution. The experiments demonstrated that lignin had the most significant effects on reducing gas phase chlorine emission and achieving chlorine immobilization, and chlorine mainly existed in the form of sodium chloride in the char of lignin-PVC co-pyrolysis. Hence co-pyrolysis of lignocellulosic biomass and PVC provides a practical pathway for utilization of PVC waste in an environmentally friendly manner, realizing efficient chlorine retention and significantly reducing chlorine-related emissions.


Assuntos
Cloreto de Polivinila , Pirólise , Biomassa , Cloro , Temperatura Alta , Micro-Ondas
5.
Sci Total Environ ; 815: 152303, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896502

RESUMO

This study explored pyrolysis characteristics, nitrogen transformation and migration of heavy metals during microwave-assisted pyrolysis of municipal sewage sludge in a continuously operated auger pyrolyser at different temperatures and corn straw ratios. The results showed higher temperatures and more corn straw resulted in more gas yield (e.g., CO2, CO, CH4 and H2) and less char yield. 5 wt% corn straw addition at 750 °C achieved high-quality bio-oil with less O-containing compounds, which was more favorable for upgrading to transportation fuels. Sludge chars prepared at higher corn straw ratios had lower ratios of H/C and N/C, and higher carbon content. Nitrogen transformation pathways and mechanisms were investigated. The residual ratio of heavy metals (except Cd) in sludge char was 67.74-100%. However, the residual ratio of Cd decreased significantly to 6.46% at 750 °C. Concentrations of all heavy metals in sludge char conformed to national standard (CJ/T 362-2011, China), and the potential ecological risk was slight. Sludge chars prepared in the presence of corn straw had lower ecological risk and higher retention capacity of heavy metals (e.g., Pb, Cr, Mn, Cu, Zn, and Ni) compared with pyrolysis of sewage sludge.


Assuntos
Metais Pesados , Pirólise , Micro-Ondas , Nitrogênio , Esgotos , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...