Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 827, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558796

RESUMO

Hemogenic endothelium (HE) with hematopoietic stem cell (HSC)-forming potential emerge from specialized arterial endothelial cells (AECs) undergoing the endothelial-to-hematopoietic transition (EHT) in the aorta-gonad-mesonephros (AGM) region. Characterization of this AECs subpopulation and whether this phenomenon is conserved across species remains unclear. Here we introduce HomologySeeker, a cross-species method that leverages refined mouse information to explore under-studied human EHT. Utilizing single-cell transcriptomic ensembles of EHT, HomologySeeker reveals a parallel developmental relationship between these two species, with minimal pre-HSC signals observed in human cells. The pre-HE stage contains a conserved bifurcation point between the two species, where cells progress towards HE or late AECs. By harnessing human spatial transcriptomics, we identify ligand modules that contribute to the bifurcation choice and validate CXCL12 in promoting hemogenic choice using a human in vitro differentiation system. Our findings advance human arterial-to-hemogenic transition understanding and offer valuable insights for manipulating HSC generation using in vitro models.


Assuntos
Hemangioblastos , Transcriptoma , Humanos , Camundongos , Animais , Células-Tronco Hematopoéticas , Diferenciação Celular/genética , Aorta
2.
J Cell Physiol ; 238(1): 179-194, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436185

RESUMO

Hemogenic endothelial (HE) cells are specialized endothelial cells to give rise to hematopoietic stem/progenitor cells during hematopoietic development. The underlying mechanisms that regulate endothelial-to-hematopoietic transition (EHT) of human HE cells are not fully understand. Here, we identified platelet endothelial aggregation receptor-1 (PEAR1) as a novel regulator of early hematopoietic development in human pluripotent stem cells (hPSCs). We found that the expression of PEAP1 was elevated during hematopoietic development. A subpopulation of PEAR1+ cells overlapped with CD34+ CD144+ CD184+ CD73- arterial-type HE cells. Transcriptome analysis by RNA sequencing indicated that TAL1/SCL, GATA2, MYB, RUNX1 and other key transcription factors for hematopoietic development were mainly expressed in PEAR1+ cells, whereas the genes encoding for niche-related signals, such as fibronectin, vitronectin, bone morphogenetic proteins and jagged1, were highly expressed in PEAR1- cells. The isolated PEAR1+ cells exhibited significantly greater EHT capacity on endothelial niche, compared with the PEAR1- cells. Colony-forming unit (CFU) assays demonstrated the multilineage hematopoietic potential of PEAR1+ -derived hematopoietic cells. Furthermore, PEAR1 knockout in hPSCs by CRISPR/Cas9 technology revealed that the hematopoietic differentiation was impaired, resulting in decreased EHT capacity, decreased expression of hematopoietic-related transcription factors, and increased expression of niche-related signals. In summary, this study revealed a novel role of PEAR1 in balancing intrinsic and extrinsic signals for early hematopoietic fate decision.


Assuntos
Hemangioblastos , Hematopoese , Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes , Receptores de Superfície Celular , Humanos , Diferenciação Celular , Hemangioblastos/citologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Pluripotentes/citologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...