Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 456: 139940, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38870807

RESUMO

The MobileNetV3-based improved sine-cosine algorithm (ISCA-MobileNetV3) was combined with an artificial olfactory sensor (AOS) to address the redundancy in olfactory arrays, thereby achieving low-cost and high-precision detection of mycotoxin-contaminated maize. Specifically, volatile organic compounds of maize interacted with unoptimized AOS containing eight porphyrins and eight dye-attached nanocomposites to obtain the scent fingerprints for constructing the initial data set. The optimal decision model was MobileNetV3, with more than 98.5% classification accuracy, and its output training loss would be input into the optimizer ISCA. Remarkably, the number of olfactory arrays was reduced from 16 to 6 by ISCA-MobileNetV3 with about a 1% decrease in classification accuracy. Additionally, the developed system showed that each online evaluation was less than one second on average, demonstrating outstanding real-time performance for ensuring food safety. Therefore, AOS combined with ISCA-MobileNetV3 will encourage the development of an affordable and on-site platform for maize quality detection.

2.
Nanoscale ; 15(32): 13437-13449, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37548042

RESUMO

Crops are constantly challenged by different environmental conditions. Seed treatment using nanomaterials is a cost-effective and environmentally friendly solution for environmental stress mitigation in crop plants. Here, 56 seed nanopriming treatments are used to alleviate environmental stresses in maize. Seven selected nanopriming treatments significantly increase the stress resistance index (SRI) by 13.9% and 12.6% under salinity stress and combined heat-drought stress, respectively. Metabolomics data reveal that ZnO nanopriming treatment, with the highest SRI value, mainly regulates the pathways of amino acid metabolism, secondary metabolite synthesis, carbohydrate metabolism, and translation. Understanding the mechanism of seed nanopriming is still difficult due to the variety of nanomaterials and the complexity of interactions between nanomaterials and plants. Using the nanopriming data, we present an interpretable structure-activity relationship (ISAR) approach based on interpretable machine learning for predicting and understanding its stress mitigation effects. The post hoc and model-based interpretation approaches of machine learning are integrated to provide complementary advantages and may yield more illuminating or trustworthy results for researchers or policymakers. The concentration, size, and zeta potential of nanoparticles are identified as dominant factors for correlating root dry weight under salinity stress, and their effects and interactions are explained. Additionally, a web-based interactive tool is developed for offering prediction-level interpretation and gathering more details about a specific nanopriming treatment. This work offers a promising framework for accelerating the agricultural applications of nanomaterials and may contribute to nanosafety assessment.


Assuntos
Nanopartículas , Nanoestruturas , Estresse Fisiológico , Sementes
3.
Compr Rev Food Sci Food Saf ; 21(4): 3647-3672, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35794726

RESUMO

Fish is one of the highly demanded aquatic products, and its quality and safety play a pivotal role in daily diet. However, the possible hazardous substance in perishable fish both in pre- and postharvest periods may decrease their values and pose a threat to public health. Laborious and expensive traditional methods drive the need of developing effective tools for detecting fish quality and safety properties in a rapid, nondestructive, and effective manner. Recent advances in Raman spectroscopy (RS) and surface-enhanced Raman scattering (SERS) have shown enormous potential in various aspects, which largely boost their applications in fish quality and safety evaluation. They have incomparable merits such as providing molecule fingerprint information and allowing for rapid, sensitive, and noninvasive detection with simple sample preparation. This review provides a comprehensive overview focusing on the applications of RS and SERS for fish quality assessment and safety inspection, highlighting the hazardous substance and illegal behavior both in preharvest (veterinary drug residues and environmental pollutants) and postharvest (freshness and illegal behavior) particularly. Moreover, challenges and prospects are also proposed to facilitate the vigorous development of RS and SERS. This review is aimed to emphasize potential opportunities for applying RS and SERS as promising techniques for routine food quality and safety detection. PRACTICAL APPLICATION: With these applications, it can be clearly indicated that RS and SERS are promising and powerful in fish quality and safety surveillance, thereby reducing the occurrence of commercial fraud and food safety issues. More efforts still should be concentrated on exploiting the high-performance Raman instruments, establishing a universal Raman database, developing reproducible SERS substrates and combing RS with other versatile spectral techniques to promote these technologies from laboratory to practice. It is hoped that this review should arouse more research interests in RS and SERS technologies for fish quality and safety surveillance, as well as provide more insights to make a breakthrough.


Assuntos
Poluentes Ambientais , Análise Espectral Raman , Animais , Qualidade dos Alimentos , Substâncias Perigosas , Análise Espectral Raman/métodos
4.
Food Chem X ; 14: 100338, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35634222

RESUMO

Seed freezing damage is an agricultural disaster. To explore how frostbite affects the growth and development of corn seeds, the germination conditions, and the biological indicators including the activities of related enzymes (SOD, POD, CAT, and AMS) of different frozen corn seeds (normal, -10 °C,10 h, and -20 °C,10 h) were measured. The texture of seed coat and the cell structure of seed embryo were observed by scanning electron microscope and transmission electron microscope respectively. The texture and cell structural changes reflect the influence of frostbite on corn seeds. To propose a quick, accurate and non-destructive method to identify the freezing-damaged corn seeds, near-infrared spectroscopy was used the identify the different frozen corn seeds. Different pretreatments, feature extraction methods and modeling methods were applied, result showed that in the case of standard normal variation pretreatment combined with principal component analysis feature extraction method and K-nearest neighbor model, 99.4 % and 100 % classification results of the training set and testing set were obtained respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...