Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inflammation ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761249

RESUMO

Uveitis is an autoimmune eye disease that can be involved in the entire body and is one of the leading causes of blindness. Therefore, comprehending the mechanisms underlying the development and regulation of ocular immune responses in uveitis is crucial for designing effective therapeutic interventions. In this study, we investigated how RBPJ regulates macrophage polarization in uveitis. We demonstrated that targeted RBPJ knockdown (RBPJKD) promotes M2 macrophage polarization and ameliorates uveitis through the mtROS-mediated Notch1-Jagged1-Hes1 signaling pathway. Real-time quantitative (Q-PCR) analysis revealed that the Notch1-Jagged1-Hes1 signaling pathway was active in the eye tissues of experimental autoimmune uveitis (EAU) rats. Immunofluorescence double staining confirmed enhanced signaling primarily occurring in macrophages, establishing a correlation between the Notch1 signaling pathway and macrophages. Transmission electron microscopy evaluated the morphological and functional changes of mitochondria in each group's eye tissues. It demonstrated significant swelling and disorganization in the EAU group, which were effectively restored upon RBPJ knockdown intervention. Finally, by employing an antioxidant N-acetyl-L-cysteine (NAC) to eliminate mtROS in vivo, we observed a decrease in the M2 macrophage polarization level, which prevented the cytoprotective effect conferred by RBPJKD. These findings underscore the relevance of the Notch signaling pathway to the immune system while highlighting the potential role of mtROS as a therapeutic target for inflammation and other related diseases.

2.
Heliyon ; 10(3): e24619, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38317884

RESUMO

Naringin is a natural flavonoid with therapeutic properties found in citrus fruits and an active natural product from herbal plants. Naringin has become a focus of attention in recent years because of its ability to actively participate in the body's immune response and maintain the integrity of the immune barrier. This review aims to elucidate the mechanism of action and therapeutic efficacy of naringin in various inflammatory diseases and to provide a valuable reference for further research in this field. The review provided the chemical structure, bioavailability, pharmacological properties, and pharmacokinetics of naringin and found that naringin has good therapeutic potential for inflammatory diseases, exerting anti-inflammatory, anti-apoptotic, anti-oxidative stress, anti-ulcerative and detoxifying effects in the disease. Moreover, we found that the great advantage of naringin treatment is that it is safe and can even alleviate the toxic side effects associated with some of the other drugs, which may become a highlight of naringin research. Naringin, an active natural product, plays a significant role in systemic diseases' anti-inflammatory and antioxidant regulation through various signaling pathways and molecular mechanisms.

3.
Eur J Pharmacol ; 960: 176139, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38059448

RESUMO

Autoimmune uveitis is an intraocular inflammatory disease with a high blindness rate in developed countries such as the United States. It is pressing to comprehend the pathogenesis of autoimmune uveitis and develop novel schemes for its treatment. In the present research, we demonstrated that the Notch signaling pathway was activated, and the level of miR-223-3p was significantly reduced in rats with experimental autoimmune uveitis (EAU) compared with the level of normal rats. To investigate the relationship between miR-223-3p and Notch signaling, EAU rats received miR-223-3p-carrying lentivirus, miR-223-3p vector-carrying lentivirus (miR-223-3p-N), and γ-secretase inhibitor (DAPT), respectively. The results of Q-PCR, immunological experiments, and flow cytometry analysis all support the hypothesis that both miR-223-3p and DAPT, a Notch signaling pathway inhibitor, had similar inhibitory effects on the EAU pathological process. That is to say, they could both inhibit the activation of the Notch signaling pathway via modulating recombination signal binding protein-Jκ (RBPJ) to restore the polarization imbalance of M/M2 macrophages in EAU rats. In addition, miR-223-3p could also inhibit NLRP3 inflammasome activation and inflammasome-induced pyroptosis in ocular tissues. Taken together, our findings indicate that miR-223-3p serves as an important regulator in M1 macrophage polarization and pyroptosis, thereby alleviating the inflammatory response in uveitis.


Assuntos
MicroRNAs , Uveíte , Ratos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Inflamassomos , Piroptose , Uveíte/metabolismo , Uveíte/terapia , Macrófagos/metabolismo , MicroRNAs/genética , Transdução de Sinais
4.
Mediators Inflamm ; 2023: 8821610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332618

RESUMO

Macrophages are innate immune cells in the organism and can be found in almost tissues and organs. They are highly plastic and heterogeneous cells and can participate in the immune response, thereby playing a crucial role in maintaining the immune homeostasis of the body. It is well known that undifferentiated macrophages can polarize into classically activated macrophages (M1 macrophages) and alternatively activated macrophages (M2 macrophages) under different microenvironmental conditions. The directions of macrophage polarization can be regulated by a series of factors, including interferon, lipopolysaccharide, interleukin, and noncoding RNAs. To elucidate the role of macrophages in various autoimmune diseases, we searched the literature on macrophages with the PubMed database. Search terms are as follows: macrophages, polarization, signaling pathways, noncoding RNA, inflammation, autoimmune diseases, systemic lupus erythematosus, rheumatoid arthritis, lupus nephritis, Sjogren's syndrome, Guillain-Barré syndrome, and multiple sclerosis. In the present study, we summarize the role of macrophage polarization in common autoimmune diseases. In addition, we also summarize the features and recent advances with a particular focus on the immunotherapeutic potential of macrophage polarization in autoimmune diseases and the potentially effective therapeutic targets.


Assuntos
Artrite Reumatoide , Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Macrófagos/metabolismo , Inflamação/metabolismo , Nefrite Lúpica/metabolismo , Artrite Reumatoide/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Ativação de Macrófagos/fisiologia
5.
Int Immunopharmacol ; 120: 110392, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37262960

RESUMO

Uveitis is a common ocular disease that can induce serious complications and sequelae. It is one of the major causes of blindness. Currently, mounting evidence suggests that glucocorticoids (GCs) can suppress ocular inflammation and promote the healing of damaged ocular tissues, but the underlying mechanism remains unclear. The present study aimed to elucidate the mechanism by which GCs modulate the homeostasis of M1/M2 macrophage polarization in experimental autoimmune uveitis (EAU) through the p38MAPK-MEF2C axis. Female Lewis rats were randomly divided into four groups: a normal control (NC) group, an EAU group, an EAU + glucocorticoid (EAU + GC) group, and an EAU + p38MAPK inhibitor (EAU + SB) group. The EAU model was induced in EAU, EAU + GC, and EAU + SB groups, followed by the treatments of normal saline, GC (predisione), and SB203580, respectively. The findings demonstrated that the rats in GC and SB groups had much less ocular inflammation, and the clinical and pathological scores decreased. Further research revealed that GC and SB treatment could inhibit iNOS and CD86 expression while promoting Arg-1 and CD206 secretion in IRBP-induced uveitis rats. Moreover, we found that the role of GC was similar to the results of SB203580, but the role of GC was masked by the C16-PAF (a p38MAPK activator) treatment. Molecular docking and western blot results confirmed that GC's therapeutic action against EAU is mediated via the p38MAPK-MEF2C axis. It regulates macrophage polarization by encouraging M1 to M2 transition and releasing anti-inflammatory factors.


Assuntos
Doenças Autoimunes , Uveíte , Feminino , Ratos , Animais , Glucocorticoides/uso terapêutico , Simulação de Acoplamento Molecular , Ratos Endogâmicos Lew , Uveíte/tratamento farmacológico , Inflamação , Macrófagos/metabolismo , Modelos Animais de Doenças
6.
Int Immunopharmacol ; 116: 109809, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36753985

RESUMO

Uveitis is an immune eye disease that can seriously impair vision. Glucocorticoids (GCS) have been extensively used to treat uveitis, though the mechanisms have not been fully elucidated. In this study, we investigated the regulatory effects of prednisone acetate (PA) on the Th1/Th2 and Th17/Treg balance in experimental autoimmune uveitis (EAU) through modulating the Notch signaling pathway. Briefly, Lewis rats were randomly divided into the normal control (NC), EAU, and EAU + PA groups. Rats in EAU and EAU + PA groups were induced EAU, while those in the EAU + PA group were treated with PA. Clinical and histopathological scores were employed to assess the progression of EAU. The expression levels of Notch signaling-related molecules (Notch1, Notch2, Dll3, Dll4, and Rbpj) and Th-associated cytokines (IFN-γ, IL-4, IL-10, and IL-17) were assessed via quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA). In addition, the frequencies of Th1, Th2, Th17 and Treg cells were detected by flow cytometry. These experimental results indicated that activation of the Notch signaling pathway occurred in EAU rats and resulted in a severe imbalance of the Th17/Treg and Th1/Th2 ratios. PA treatment significantly alleviated ocular inflammation, inhibited activation of the Notch signaling pathway, and declined Th1, and Th17 cell differentiation, thereby restoring the Th1/Th2 and Th17/Treg balance. Collectively, PA can positively enhance the systemic immune response and improve the intraocular microenvironmental homeostasis by inhibiting activation of the Notch signaling pathway and by restoring Th1/Th2 and Th17/Treg balance, thus achieving the goal of treating uveitis.


Assuntos
Doenças Autoimunes , Uveíte , Animais , Ratos , Acetatos/uso terapêutico , Prednisona/uso terapêutico , Ratos Endogâmicos Lew , Transdução de Sinais , Linfócitos T Reguladores , Células Th1 , Células Th17 , Uveíte/tratamento farmacológico , Receptores Notch
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...