Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Netw ; 174: 106248, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518708

RESUMO

The specified convergence time, designated by the user, is highly attractive for many high-demand applications such as industrial robot control, missile guidance, and autonomous vehicles. For the application of neural networks in the field of secure communication and power systems, the importance of prescribed-time synchronization(PTs) and stable performance of the system is more prominent. This paper introduces a prescribed-time controller without the fractional power function and sign function, which can reach synchronization at a prescribed time and greatly reduce the chattering phenomenon of neural networks. Additionally, by constructing synchronizing/desynchronizing impulse sequences, the PTs of switching complex networks(SCN) is achieved with impulse effects, where the time sequences of switching and impulse occurrences in the networks are constrained by the average dwell time. This approach effectively reduces the impact of frequent mode switching on network synchronization, and the synchronization time can be flexibly adjusted within any physically allowable range to accommodate different application requirements. Finally, the effectiveness of the proposed control strategy is demonstrated by two examples.


Assuntos
Genes de Troca , Redes Neurais de Computação , Fatores de Tempo , Comunicação
2.
MAGMA ; 35(2): 193-203, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34524564

RESUMO

OBJECTIVE: To propose a fully automated algorithm, which is implemented to segment subcutaneous adipose tissue (SAT) and internal adipose tissue (IAT) from the total adipose tissue for whole-body fat distribution analysis using proton density fat fraction (PDFF) magnetic resonance images. MATERIALS AND METHODS: Adipose tissue segmentation was implemented using the U-Net deep neural network model. All datasets were collected using a 3.0 T magnetic resonance imaging (MRI) scanner for whole-body scan of 20 volunteers covering from neck to knee with about 160 images for each volunteer. PDFF images were reconstructed based on chemical-shift-encoded fat-water imaging. After selecting the representative PDFF images (total 906 images), the manual labeling of the SAT area was used for model training (504 images), validation (168 images), and testing (234 images). RESULTS: The automatic segmentation model was validated through three indices using the validation and test sets. The dice similarity coefficient, precision rate, and recall rate were 0.976 ± 0.048, 0.978 ± 0.048, and 0.978 ± 0.050, respectively, in both validation and test sets. CONCLUSION: The proposed algorithm can reliably and automatically segment SAT and IAT from whole-body MRI PDFF images. The proposed method provides a simple and automatic tool for whole-body fat distribution analysis to explore the relationship between fat deposition and metabolic-related chronic diseases.


Assuntos
Tecido Adiposo , Imageamento por Ressonância Magnética , Tecido Adiposo/diagnóstico por imagem , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Prótons , Imagem Corporal Total
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...