Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Anal Chem ; 96(11): 4570-4579, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38441542

RESUMO

Ferroptosis, as a new form of regulated cell death, is implicated in various physiological and pathological processes. Developing a single probe for an independent analysis of multiple analytes related to ferroptosis can provide more accurate information and simplify the detection procedures, but it faces great challenges. In this work, we develop a fluorescent probe for the simultaneous detection of GSH through ratiometric fluorescence response and microviscosity via a fluorescence lifetime model. Based on the reversible Michael addition reaction between GSH and unsaturated C═C bond, the probe responds reversibly to GSH with a ratiometric fluorescence variation and a fast response time (t1/2 = 4.7 s). At the same time, the probe is sensitive to environmental viscosity by changing its fluorescence lifetimes. The probe was applied to monitor the drug-induced ferroptosis process through both the classical Xc-/GSH/GPX4- and DHODH-mediated defense mechanisms. We hope that the probe will provide a useful molecular tool for the real-time live-cell imaging of GSH dynamics, which is benefit to unveiling related physiological and pathological processes.


Assuntos
Ferroptose , Viscosidade , Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos , Imagem Óptica , Glutationa/análise
2.
Transl Pediatr ; 11(8): 1346-1361, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36072536

RESUMO

Background: In childhood, metastatic neuroblastoma (NB) is the most common extracranial solid tumor, but there are no appropriate drugs for its treatment. Dihydroartemisinin (DHA), a drug for malaria treatment, has therapeutic potential in several cancers; however, its mechanisms remain unclear. This study aimed to investigate the anti-proliferation effect of DHA on SH-SY5Y cells and to explore its mechanism in vitro. Methods: We used 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to measure the half-maximal inhibitory concentration (IC50) of DHA; western blot was used to determine protein levels; propidium iodide (PI) staining was used to determine apoptotic cells; JC-1 staining to measure mitochondrial membrane potential; and dichloro-dihydro-fluorescein diacetate (DCFH-DA) staining was used to determine reactive oxygen species (ROS). Metabonomic analysis was performed by using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS)-based untargeted metabolomics. Multivariate statistical analysis was performed to screen potential metabolites associated with DHA treatment in SH-SY5Y cells. Results: It was shown that DHA inhibited SH-SY5Y cell proliferation and increased poly (ADP-ribose) polymerase (PARP-1) and caspase 3 in a dose-dependent manner. In Further, DHA promoted ROS generation and γH2AX expression. In addition, a total of 125 proposed metabolites in SH-SY5Y cells and 45 vital metabolic pathways were identified through UHPLC-MS/MS-based untargeted metabolomic analysis. Conclusions: These data suggest that DHA could regulate taurine, linoleic acid, phenylalanine metabolism, and tryptophan metabolism, which are involved in the anti-proliferation effect of DHA in SH-SY5Y cells.

3.
Braz. J. Pharm. Sci. (Online) ; 58: e191086, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1394042

RESUMO

Abstract Fluoroquinolones are an important class of antimicrobial agents to manage infectious diseases. However, knowledge about how host bile acids are modified by fluoroquinolones is limited. We investigated and compared the impact of fluoroquinolones on circulating bile acid profiles and gut microbiota from in vivo studies. We administered ciprofloxacin (100 mg/kg/day) or moxifloxacin (40 mg/kg/day) orally to male Wistar rats for seven days. Fifteen bile acids (BAs) from the serum and large intestine were quantified by HPLC-MS/MS. The diversity of gut microbiota after ciprofloxacin and moxifloxacin treatment was analyzed using high-throughput, next-generation sequencing technology. The two fluoroquinolone-treated groups had different BA profiles. Ciprofloxacin significantly reduced the hydrophobicity index of the BA pool, reduced secondary BAs, and increased taurine-conjugated primary BAs in both the serum and large intestine as compared with moxifloxacin. Besides, ciprofloxacin treatment altered intestinal microbiota with a remarkable increase in Firmicutes to Bacteroidetes ratio, while moxifloxacin exerted no effect. What we found suggests that different fluoroquinolones have a distinct effect on the host BAs metabolism and intestinal bacteria, and therefore provide guidance on the selection of fluoroquinolones to treat infectious diseases.


Assuntos
Animais , Masculino , Ratos , Ácidos e Sais Biliares , Estudo Comparativo , Ciprofloxacina/análise , Ratos Wistar , Microbioma Gastrointestinal , Moxifloxacina/análise , Cromatografia Líquida de Alta Pressão/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hidrofóbicas e Hidrofílicas , Intestino Grosso/anormalidades , Anti-Infecciosos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...