Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36501678

RESUMO

Equal channel angular extrusion (ECAE) is a solid-state extrusion process for modifying microstructures via severe plastic deformation without modifying the specimen cross section. In this study, changes in the microstructure and mechanical properties of polypropylene resulting from extrusion orientation route A (no rotation between extrusions) and extrusion orientation route C (a rotation of 180° between extrusions) are investigated using a 90° die-angle tooling outfitted with back pressure. Important differences are reported for the ECAE-induced deformation behavior between the two processing routes. A focus is made on the occurrence of heterogeneous plastic deformations (periodic shear banding and warping) for both routes and the control and inhibition of the plastic instabilities via regulated back pressure and ram velocity. Wide-angle X-ray scattering is carried out to characterize the structural evolution as a function of the processing conditions including route, extrusion velocity and BP application. The mechanical properties of the specimens machined from the ECAE pieces are examined under different loading paths including uniaxial tension/compression and simple shear. Full-field displacements converted to volumetric strains revealed the profound impacts of the processing route on the deformation mechanisms during tensile deformation.

2.
Molecules ; 27(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35011367

RESUMO

In this work, spherical flower-shaped composite carbonyl iron powder@MnO2 (CIP@MnO2) with CIP as the core and ultrathin MnO2 nanosheets as the shell was successfully prepared by a simple redox reaction to improve oxidation resistance and electromagnetic wave absorption properties. The microwave-absorbing properties of CIP@MnO2 composites with different filling ratios (mass fractions of 20%, 40%, and 60% after mixing with paraffin) were tested and analyzed. The experimental results show that compared with pure CIP, the CIP@MnO2 composites have smaller minimum reflection loss and a wider effective absorption bandwidth than CIP (RL < -20 dB). The sample filled with 40 wt% has the best comprehensive performance, the minimum reflection loss is -63.87 dB at 6.32 GHz, and the effective absorption bandwidth (RL < -20 dB) reaches 7.28 GHz in the range of 5.92 GHz-9.28 GHz and 11.2 GHz-15.12 GHz, which covers most C and X bands. Such excellent microwave absorption performance of the spherical flower-like CIP@MnO2 composites is attributed to the combined effect of multiple beneficial components and the electromagnetic attenuation ability generated by the special spherical flower-like structure. Furthermore, this spherical flower-like core-shell shape aids in the creation of discontinuous networks, which improve microwave incidence dispersion, polarize more interfacial charges, and allow electromagnetic wave absorption. In theory, this research could lead to a simple and efficient process for producing spherical flower-shaped CIP@MnO2 composites with high absorption, a wide band, and oxidation resistance for a wide range of applications.

3.
Proc Inst Mech Eng H ; 234(9): 1000-1010, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32615851

RESUMO

The aim of this article is to provide some insights on the osmo-inelastic response under stretching of annulus fibrosus of the intervertebral disc. Circumferentially oriented specimens of square cross section, extracted from different regions of bovine cervical discs (ventral-lateral and dorsal-lateral), are tested under different strain-rates and saline concentrations within normal range of strains. An accurate optical strain measuring technique, based upon digital image correlation, is used in order to determine the full-field displacements in the lamellae and fibers planes of the layered soft tissue. Annulus stress-stretch relationships are measured along with full-field transversal strains in the two planes. The mechanical response is found hysteretic, rate-dependent and osmolarity-dependent with a Poisson's ratio higher than 0.5 in the fibers plane and negative (auxeticity) in the lamellae plane. While the stiffness presents a regional-dependency due to variations in collagen fibers content/orientation, the strain-rate sensitivity of the response is found independent on the region. A significant osmotic effect is found on both the auxetic response in the lamellae plane and the stiffness rate-sensitivity. These local experimental observations will result in more accurate chemo-mechanical modeling of the disc annulus and a clearer multi-scale understanding of the disc intervertebral function.


Assuntos
Anel Fibroso , Disco Intervertebral , Animais , Bovinos , Osmose , Estresse Mecânico
4.
Clin Biomech (Bristol, Avon) ; 76: 105020, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32416404

RESUMO

BACKGROUND: The role of the axial pre-strain on the torsional response of the intervertebral disc remains largely undefined. Moreover, the chemo-mechanical interactions in disc tissues are still unclear and corresponding data are rare in the literature. The paper deals with an in-vitro study of the pre-strain effect on the chemical sensitivity of the disc torsional response. METHODS: Fifteen non-frozen 'motion segments' (two vertebrae and the intervening soft tissues) were extracted from the cervical spines of mature sheep. The motion segments were loaded in torsion at various saline concentrations and axial pre-strain levels in order to modulate the intradiscal pressure. After preconditioning with successive low-strain compressions at a magnitude of 0.1 mm (10 cycles at 0.05 mm/s), the motion segment was subjected to a cyclic torsion until a twisting level of 2 deg. at 0.05 deg./s while a constant axial pre-strain (in compression or in tension) is maintained, the saline concentration of the surrounding fluid bath being changed from hypo-osmotic condition to hyper-osmotic condition. FINDINGS: Analysis of variance shows that the saline concentration influences the torsional response only when the motion segments are pre-compressed (p < .001) with significant differences between hypo-osmotic condition and hyper-osmotic condition. INTERPRETATION: The combination of a compressive pre-strain with twisting amplifies the nucleus hydrostatic pressure on the annulus and the annulus collagen fibers tensions. The proteoglycans density increases with the compressive pre-strain and leads to higher chemical imbalances, which would explain the increase in chemical sensitivity of the disc torsional response.


Assuntos
Força Compressiva , Disco Intervertebral/fisiologia , Animais , Fenômenos Biomecânicos , Vértebras Cervicais/fisiologia , Vértebras Lombares/fisiologia , Pressão , Ovinos , Estresse Mecânico
5.
J Mater Sci Mater Med ; 30(4): 46, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30953223

RESUMO

Degeneration of the intervertebral disc (IVD) is a leading source of chronic low back pain or neck pain, and represents the main cause of long-term disability worldwide. In the aim to relieve pain, total disc replacement (TDR) is a valuable surgical treatment option, but the expected benefit strongly depends on the prosthesis itself. The present contribution is focused on the synthetic mimic of the native IVD in the aim to optimally restore its functional anatomy and biomechanics, and especially its time-dependency. Semi-crystalline polyethylene (PE) materials covering a wide spectrum of the crystallinity are used to propose new designs of TDR. The influence of the crystallinity on various features of the time-dependent mechanical response of the PE materials is reported over a large strain range by means of dynamic mechanical thermo-analysis and video-controlled tensile mechanical tests. The connection of the stiffness and the yield strength with the microstructure is reported in the aim to propose a model predicting the crystallinity dependency of the response variation with the frequency. New designs of TDR are proposed and implemented into an accurate computational model of a cervical spine segment in order to simulate the biomechanical response under physiological conditions. Predicted in-silico motions are found in excellent agreement with experimental data extracted from published in-vitro studies under compression and different neck movements, namely, rotation, flexion/extension and lateral bending. The simulation results are also criticized by analyzing the local stresses and the predicted biomechanical responses provided by the different prosthetic solutions in terms of time-dependency manifested by the hysteretic behavior under a cyclic movement and the frequency effect.


Assuntos
Fenômenos Biomecânicos/fisiologia , Substitutos Ósseos/química , Disco Intervertebral , Polietileno/química , Desenho de Prótese , Substituição Total de Disco , Alcenos/química , Cristalização , Testes de Dureza , Humanos , Disco Intervertebral/química , Disco Intervertebral/cirurgia , Vértebras Lombares , Teste de Materiais , Polietilenos/química , Polímeros/química , Amplitude de Movimento Articular/fisiologia , Estresse Mecânico , Fatores de Tempo , Substituição Total de Disco/instrumentação , Substituição Total de Disco/métodos , Suporte de Carga/fisiologia
6.
J Mech Behav Biomed Mater ; 94: 288-297, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30933837

RESUMO

With their gradual and continuous properties, functionally graded polymers (FGP) have high potentials to reproduce the regional variation in microstructure/property of the natural intervertebral disc and, therefore, the functional anatomy and biomechanics of the soft tissue. This paper evaluates by finite element analysis the biomechanical response and stress distribution of a novel disc prosthesis using FGP. The kinetics of the FGP parameters is designed using experimental data issued from linear ethylene copolymers over a wide crystallinity range. The radial variation in crystallinity index within the disc prosthesis varies gradually and continuously following a special function in the aim to tailor and optimize the FGP parameters. The experimental data of a healthy human cervical spine segment are used to predict the optimal model of the FGP disc prosthesis loaded under different physiological loading conditions, i.e. rotation, lateral bending and flexion/extension. The results suggest that the FGP parameters can be tailored to control the stiffening, the non-linear behavior, the inelastic effects and the stress distribution in the aim to propose the optimal prosthesis model giving the great opportunity of patient-specific FGP prostheses via 3D printing technologies.


Assuntos
Análise de Elementos Finitos , Disco Intervertebral , Teste de Materiais , Fenômenos Mecânicos , Polímeros , Próteses e Implantes , Fenômenos Biomecânicos , Estresse Mecânico
7.
Proc Inst Mech Eng H ; 233(3): 332-341, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30803330

RESUMO

The intervertebral disc exhibits a complex inelastic response characterized by relaxation, hysteresis during cyclic loading and rate dependency. All these inelastic phenomena depend on osmotic interactions between disc tissues and their surrounding chemical environment. Coupling between osmotic and inelastic effects is not fully understood, so this article aimed to study the influence of chemical conditions on the inelastic behaviour of the intervertebral disc in response to different modes of loading. A total of 18 non-frozen 'motion segments' (two vertebrae and the intervening soft tissues) were dissected from the cervical spines of mature sheep. The motion segments were loaded in tension, compression and torsion at various loading rates and saline concentrations. Analysis of variance showed that saline concentration significantly influenced inelastic effects in tension and especially in compression (p < 0.05), but not in torsion. Opposite effects were seen in tension and compression. An interpretation of the underlying osmo-inelastic mechanisms is proposed in which two sources of inelastic effects are identified, that is, extracellular matrix rearrangements and fluid exchange created by osmosis.


Assuntos
Elasticidade , Disco Intervertebral/fisiologia , Teste de Materiais , Osmose , Animais , Fenômenos Biomecânicos , Vértebras Cervicais/fisiologia , Disco Intervertebral/metabolismo , Ovinos , Estresse Mecânico , Suporte de Carga
8.
BMC Biotechnol ; 18(1): 80, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30547780

RESUMO

BACKGROUND: More than a dozen of fungal immunomodulatory proteins (FIPs) have been identified to date, most of which are from Ganoderma species. However, little is known about the similarities and differences between different Ganoderma FIPs' bioactivities. In the current study, two FIP genes termed FIP-gap1 and FIP-gap2 from G. applanatum, along with LZ-8 and FIP-gsi, another two representative Ganoderma FIP genes from G. lucidum and G. sinense were functionally expressed in Pichia. Subsequently, bioactivities of four recombinant Ganoderma FIPs were demonstrated and compared. RESULTS: All the four Ganoderma FIP genes could be effectively expressed in P. pastoris GS115 at expression levels ranging from 197.5 to 264.3 mg L- 1 and simply purified by one step chromatography using HisTrap™ FF prepack columns. Amino acid sequence analysis showed that they all possessed the FIP conserved fragments. The homologies of different Ganoderma FIPs were from 72.6 to 86.4%. In vitro haemagglutination exhibited that FIP-gap1, FIP-gsi and LZ-8 could agglutinate human, sheep and mouse red blood cells but FIP-gap2 agglutinated none. Besides, the immunomodulation activities of these Ganoderma FIPs were as: rFIP-gap2 > rFIP-gap1 > rLZ-8 and rFIP-gsi in terms of proliferation stimulation and cytokine induction on murine splenocytes. Additionally, the cytotoxic activity of different FIPs was: rFIP-gap1 > rLZ-8 > rFIP-gsi > rFIP-gap2, examined by their inhibition of three human carcinomas A549, Hela and MCF-7. CONCLUSIONS: Taken together, four typical Ganoderma FIP genes could be functionally expressed in P. pastoris, which might supply as feasible efficient resources for further study and application. Both similarities and differences were indeed observed between Ganoderma FIPs in their amino acid sequences and bioactivities. Comprehensively, rFIP-gaps from G. applanatum proved to be more effective in immunomodulation and cytotoxic assays in vitro than rLZ-8 (G. lucidum) and rFIP-gsi (G. sinense).


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/farmacologia , Ganoderma/genética , Expressão Gênica , Fatores Imunológicos/genética , Fatores Imunológicos/farmacologia , Motivos de Aminoácidos , Animais , Linhagem Celular , Citocinas/genética , Citocinas/imunologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/fisiologia , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Ganoderma/química , Ganoderma/metabolismo , Testes de Hemaglutinação , Humanos , Fatores Imunológicos/isolamento & purificação , Fatores Imunológicos/metabolismo , Camundongos , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Ovinos
9.
J Mech Behav Biomed Mater ; 79: 264-272, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29335193

RESUMO

The damage and crack resistance improvement of bioactive glass is of prime importance, particularly when applied to the repair of load-bearing bones. The present contribution is focused on the prediction of damage mechanisms and crack resistance under uniaxial compression of bioactive glass matrix composites reinforced with a particulate phase. In order to characterize the effects of voids and particles on the damage mechanisms and the macro-response, a two-step homogenization is performed by considering the two phases existing at two different scales: micro/meso through the homogenization of the porous matrix and then meso/macro through the periodic micro-field approach. The damage in the bioactive glass matrix is computed via an anisotropic stress-based damage model, implemented into a finite element program. Failure resulting of excessive damage accumulation in the bioactive glass matrix is predicted by a critical damage criterion combined with a vanishing element technique. The implication of particles in the toughening mechanism as well as the damage and crack resistance improvement in this class of porous biomaterials is highlighted via a parametric study using the proposed numerical model.


Assuntos
Materiais Biocompatíveis , Vidro , Alicerces Teciduais , Força Compressiva , Teste de Materiais , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...