Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 16: 1342366, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389560

RESUMO

The blood-brain barrier (BBB) is pivotal in maintaining neuronal physiology within the brain. This review delves into the alterations of the BBB specifically in the context of geriatric epilepsy. We examine how age-related changes in the BBB contribute to the pathogenesis of epilepsy in the elderly and present significant challenges in pharmacotherapy. Subsequently, we evaluate recent advancements in drug delivery methods targeting the BBB, as well as alternative approaches that could bypass the BBB's restrictive nature. We particularly highlight the use of neurotropic viruses and various synthetic nanoparticles that have been investigated for delivering a range of antiepileptic drugs. Additionally, the advantage and limitation of these diverse delivery methods are discussed. Finally, we analyze the potential efficacy of different drug delivery approaches in the treatment of geriatric epilepsy, aiming to provide insights into more effective management of this condition in the elderly population.

2.
J Neurol Surg A Cent Eur Neurosurg ; 85(3): 294-301, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37918885

RESUMO

BACKGROUND: High-frequency oscillations (HFOs) are spontaneous electroencephalographic (EEG) events that occur within the frequency range of 80 to 500 Hz and consist of at least four distinct oscillations that stand out from the background activity. They can be further classified into "ripples" (80-250 Hz) and "fast ripples" (FR; 250-500 Hz) based on different frequency bands. Studies have indicated that HFOs may serve as important markers for identifying epileptogenic regions and networks in patients with refractory epilepsy. Furthermore, a higher extent of removal of brain regions generating HFOs could potentially lead to improved prognosis. However, the clinical application criteria for HFOs remain controversial, and the results from different research groups exhibit inconsistencies. Given this controversy, the aim of this study was to conduct a meta-analysis to explore the utility of HFOs in predicting postoperative seizure outcomes by examining the prognosis of refractory epilepsy patients with varying ratios of HFO removal. METHODS: Prospective and retrospective studies that analyzed HFOs and postoperative seizure outcomes in epilepsy patients who underwent resective surgery were included in the meta-analysis. The patients in these studies were grouped based on the ratio of HFOs removed, resulting in four groups: completely removed FR (C-FR), completely removed ripples (C-Ripples), mostly removed FR (P-FR), and partial ripples removal (P-Ripples). The prognosis of patients within each group was compared to investigate the correlation between the ratio of HFO removal and patient prognosis. RESULTS: A total of nine studies were included in the meta-analysis. The prognosis of patients in the C-FR group was significantly better than that of patients with incomplete FR removal (odds ratio [OR] = 6.62; 95% confidence interval [CI]: 3.10-14.15; p < 0.00001). Similarly, patients in the C-Ripples group had a more favorable prognosis compared with those with incomplete ripples removal (OR = 4.45; 95% CI: 1.33-14.89; p = 0.02). Patients in the P-FR group had better prognosis than those with a majority of FR remaining untouched (OR = 6.23; 95% CI: 2.04-19.06; p = 0.001). In the P-Ripples group, the prognosis of patients with a majority of ripples removed was superior to that of patients with a majority of ripples remaining untouched (OR = 8.14; 95% CI: 2.62-25.33; p = 0.0003). CONCLUSIONS: There is a positive correlation between the greater removal of brain regions generating HFOs and more favorable postoperative seizure outcomes. However, further investigations, particularly through clinical trials, are necessary to justify the clinical application of HFOs in guiding epilepsy surgery.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Humanos , Epilepsia Resistente a Medicamentos/cirurgia , Estudos Retrospectivos , Estudos Prospectivos , Epilepsia/cirurgia , Convulsões , Eletroencefalografia/métodos
3.
Front Neurol ; 14: 1198546, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37786863

RESUMO

Hypoxia is characterized by low oxygen levels in the body or environment, resulting in various physiological and pathological changes. The brain, which has the highest oxygen consumption of any organ, is particularly susceptible to hypoxic injury. Exposure to low-pressure hypoxic environments can cause irreversible brain damage. Hypoxia can occur in healthy individuals at high altitudes or in pathological conditions such as trauma, stroke, inflammation, and autoimmune and neurodegenerative diseases, leading to severe brain damage and impairments in cognitive, learning, and memory functions. Exosomes may play a role in the mechanisms of hypoxic injury and adaptation and are a current focus of research. Investigating changes in exosomes in the central nervous system under hypoxic conditions may aid in preventing secondary damage caused by hypoxia. This paper provides a brief overview of central nervous system injury resulting from hypoxia, and aimed to conduct a comprehensive literature review to assess the pathophysio-logical impact of exosomes on the central nervous system under hypoxic conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...