Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE J Transl Eng Health Med ; 11: 405-416, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492469

RESUMO

OBJECTIVE: Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disease that is not easily detectable in the early stage. This study proposed an efficient method of applying a graph convolutional network (GCN) on the early prediction of AD. METHODS: We proposed a univariate neurodegeneration biomarker (UNB) based GCN semi-supervised classification framework. We generated UNB by comparing the similarity of individual morphological atrophy pattern and the atrophy pattern of [Formula: see text] AD group according to the brain morphological abnormalities induced by AD. For the GCN semi-supervised classification model, we took the UNBs of individuals as the features of nodes and constructed the weight of edges according to the similarity of phenotypic information between individuals, which explored the essential features of individuals through spectral graph convolution. The attention module was constructed and embedded into the GCN framework, which may refine the input morphological features to highlight the main impact of AD on the cerebral cortex and weaken the instability caused by individual diversities, thereby identifying the significant ROIs affected by AD and improving the classification accuracy. RESULTS: We tested the UNB-GCN framework on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The estimated minimum sample sizes were 156, 349 and 423 for the longitudinal [Formula: see text] AD, [Formula: see text] mild cognitive impairment (MCI) and [Formula: see text] cognitively unimpaired (CU) groups, respectively. And the proposed UNB-GCN framework combined with the attention module can effectively improve the classification performance with 93.90% classification accuracy for AD vs. CU and 82.05% for AD vs. MCI on the validation set. CONCLUSION: The proposed UNB measures were superior to the conventional volume measures in describing the AD-induced cerebral cortex morphological changes. And the UNB-GCN framework combined with attention module may effectively improve the classification performance between MCI subjects and AD patients. Clinical and Translational Impact Statement: This study aims to predict the early AD patients, so as to help clinicians develop effective interventions to delay the deterioration of AD symptoms.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Imageamento por Ressonância Magnética/métodos , Doença de Alzheimer/diagnóstico , Neuroimagem/métodos , Biomarcadores
2.
J Alzheimers Dis ; 85(3): 1233-1250, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34924383

RESUMO

BACKGROUND: A univariate neurodegeneration biomarker (UNB) based on MRI with strong statistical discrimination power would be highly desirable for studying hippocampal surface morphological changes associated with APOE ɛ4 genetic risk for AD in the cognitively unimpaired (CU) population. However, existing UNB work either fails to model large group variances or does not capture AD induced changes. OBJECTIVE: We proposed a subspace decomposition method capable of exploiting a UNB to represent the hippocampal morphological changes related to the APOE ɛ4 dose effects among the longitudinal APOE ɛ4 homozygotes (HM, N = 30), heterozygotes (HT, N = 49) and non-carriers (NC, N = 61). METHODS: Rank minimization mechanism combined with sparse constraint considering the local continuity of the hippocampal atrophy regions is used to extract group common structures. Based on the group common structures of amyloid-ß (Aß) positive AD patients and Aß negative CU subjects, we identified the regions-of-interest (ROI), which reflect significant morphometry changes caused by the AD development. Then univariate morphometry index (UMI) is constructed from these ROIs. RESULTS: The proposed UMI demonstrates a more substantial statistical discrimination power to distinguish the longitudinal groups with different APOE ɛ4 genotypes than the hippocampal volume measurements. And different APOE ɛ4 allele load affects the shrinkage rate of the hippocampus, i.e., HM genotype will cause the largest atrophy rate, followed by HT, and the smallest is NC. CONCLUSION: The UMIs may capture the APOE ɛ4 risk allele-induced brain morphometry abnormalities and reveal the dose effects of APOE ɛ4 on the hippocampal morphology in cognitively normal individuals.


Assuntos
Alelos , Doença de Alzheimer/genética , Apolipoproteína E4/genética , Biomarcadores , Hipocampo/patologia , Idoso , Peptídeos beta-Amiloides/metabolismo , Atrofia/patologia , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...