Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 66(12): 5379-5383, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27692046

RESUMO

Pectobacterium wasabiae was originally isolated from Japanese horseradish (Eutrema wasabi), but recently some Pectobacterium isolates collected from potato plants and tubers displaying blackleg and soft rot symptoms were also assigned to P. wasabiae. Here, combining genomic and phenotypical data, we re-evaluated their taxonomic position. PacBio and Illumina technologies were used to complete the genome sequences of P. wasabiae CFBP 3304T and RNS 08-42-1A. Multi-locus sequence analysis showed that the P. wasabiae strains RNS 08-42-1A, SCC3193, CFIA1002 and WPP163, which were collected from potato plant environment, constituted a separate clade from the original Japanese horseradish P. wasabiae. The taxonomic position of these strains was also supported by calculation of the in-silico DNA-DNA hybridization, genome average nucleotide indentity, alignment fraction and average nucleotide indentity values. In addition, they were phenotypically distinguished from P. wasabiae strains by producing acids from (+)-raffinose, α-d(+)-α-lactose, d(+)-galactose and (+)-melibiose but not from methyl α-d-glycopyranoside, (+)-maltose or malonic acid. The name Pectobacterium parmentieri sp. nov. is proposed for this taxon; the type strain is RNS 08-42-1AT (=CFBP 8475T=LMG 29774T).


Assuntos
Pectobacterium/classificação , Filogenia , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Genes Bacterianos , Hibridização de Ácido Nucleico
2.
Appl Environ Microbiol ; 82(1): 268-78, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26497457

RESUMO

Development of protection tools targeting Dickeya species is an important issue in the potato production. Here, we present the identification and the characterization of novel biocontrol agents. Successive screenings of 10,000 bacterial isolates led us to retain 58 strains that exhibited growth inhibition properties against several Dickeya sp. and/or Pectobacterium sp. pathogens. Most of them belonged to the Pseudomonas and Bacillus genera. In vitro assays revealed a fitness decrease of the tested Dickeya sp. and Pectobacterium sp. pathogens in the presence of the biocontrol agents. In addition, four independent greenhouse assays performed to evaluate the biocontrol bacteria effect on potato plants artificially contaminated with Dickeya dianthicola revealed that a mix of three biocontrol agents, namely, Pseudomonas putida PA14H7 and Pseudomonas fluorescens PA3G8 and PA4C2, repeatedly decreased the severity of blackleg symptoms as well as the transmission of D. dianthicola to the tuber progeny. This work highlights the use of a combination of biocontrol strains as a potential strategy to limit the soft rot and blackleg diseases caused by D. dianthicola on potato plants and tubers.


Assuntos
Agentes de Controle Biológico/isolamento & purificação , Enterobacteriaceae/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Tubérculos/microbiologia , Pseudomonas/fisiologia , Solanum tuberosum/microbiologia , Antibiose , DNA Bacteriano , Enterobacteriaceae/genética , Pectobacterium/genética , Pectobacterium/crescimento & desenvolvimento , Doenças das Plantas/prevenção & controle , Pseudomonas fluorescens/fisiologia , Pseudomonas putida/fisiologia
3.
Genetica ; 143(2): 241-52, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25297844

RESUMO

The blackleg and soft-rot diseases caused by pectinolytic enterobacteria such as Pectobacterium and Dickeya are major causes of losses affecting potato crop in the field and upon storage. In this work, we report the isolation, characterization and genome analysis of the Pectobacterium wasabiae (formerly identified as Pectobacterium carotovorum subsp. carotovorum) strain RNS 08.42.1A, that has been isolated from a Solanum tuberosum host plant in France. Comparative genomics with 3 other P. wasabiae strains isolated from potato plants in different areas in North America and Europe, highlighted both a strong similarity at the whole genome level (ANI > 99 %) and a conserved synteny of the virulence genes. In addition, our analyses evidenced a robust separation between these four P. wasabiae strains and the type strain P. wasabiae CFBP 3304(T), isolated from horseradish in Japan. In P. wasabiae RNS 08.42.1A, the expI and expR nucleotidic sequences are more related to those of some Pectobacterium atrosepticum and P. carotovorum strains (90 % of identity) than to those of the other potato P. wasabiae strains (70 to 74 % of identity). This could suggest a recruitment of these genes in the P. wasabiae strain RNS 08.42.1A by an horizontal transfer between pathogens infecting the same potato host plant.


Assuntos
Transferência Genética Horizontal , Genoma Bacteriano , Pectobacterium/genética , Percepção de Quorum/genética , DNA Bacteriano/genética , Dados de Sequência Molecular , Pectobacterium/isolamento & purificação , Pectobacterium/patogenicidade , Filogenia , Doenças das Plantas/microbiologia , Análise de Sequência de DNA , Solanum tuberosum/microbiologia , Sintenia , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...