Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(3): e0193900, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29522539

RESUMO

The output from whole genome sequencing is a set of contigs, i.e. short non-overlapping DNA sequences (sizes 1-100 kilobasepairs). Piecing the contigs together is an especially difficult task for previously unsequenced DNA, and may not be feasible due to factors such as the lack of sufficient coverage or larger repetitive regions which generate gaps in the final sequence. Here we propose a new method for scaffolding such contigs. The proposed method uses densely labeled optical DNA barcodes from competitive binding experiments as scaffolds. On these scaffolds we position theoretical barcodes which are calculated from the contig sequences. This allows us to construct longer DNA sequences from the contig sequences. This proof-of-principle study extends previous studies which use sparsely labeled DNA barcodes for scaffolding purposes. Our method applies a probabilistic approach that allows us to discard "foreign" contigs from mixed samples with contigs from different types of DNA. We satisfy the contig non-overlap constraint by formulating the contig placement challenge as a combinatorial auction problem. Our exact algorithm for solving this problem reduces computational costs compared to previous methods in the combinatorial auction field. We demonstrate the usefulness of the proposed scaffolding method both for synthetic contigs and for contigs obtained using Illumina sequencing for a mixed sample with plasmid and chromosomal DNA.


Assuntos
Algoritmos , Mapeamento de Sequências Contíguas/métodos , Código de Barras de DNA Taxonômico , Benzoxazóis/metabolismo , Ligação Competitiva , Cromossomos/química , Simulação por Computador , DNA Bacteriano/genética , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Genéticos , Netropsina/metabolismo , Plasmídeos/genética , Estudo de Prova de Conceito , Compostos de Quinolínio/metabolismo , Sequências Repetitivas de Ácido Nucleico/genética , Alinhamento de Sequência
3.
Sci Rep ; 6: 37938, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27905467

RESUMO

Bacterial plasmids are extensively involved in the rapid global spread of antibiotic resistance. We here present an assay, based on optical DNA mapping of single plasmids in nanofluidic channels, which provides detailed information about the plasmids present in a bacterial isolate. In a single experiment, we obtain the number of different plasmids in the sample, the size of each plasmid, an optical barcode that can be used to identify and trace the plasmid of interest and information about which plasmid that carries a specific resistance gene. Gene identification is done using CRISPR/Cas9 loaded with a guide-RNA (gRNA) complementary to the gene of interest that linearizes the circular plasmids at a specific location that is identified using the optical DNA maps. We demonstrate the principle on clinically relevant extended spectrum beta-lactamase (ESBL) producing isolates. We discuss how the gRNA sequence can be varied to obtain the desired information. The gRNA can either be very specific to identify a homogeneous group of genes or general to detect several groups of genes at the same time. Finally, we demonstrate an example where we use a combination of two gRNA sequences to identify carbapenemase-encoding genes in two previously not characterized clinical bacterial samples.


Assuntos
Bactérias/genética , Proteínas de Bactérias/genética , Resistência Microbiana a Medicamentos , Plasmídeos/genética , Sistemas CRISPR-Cas , Mapeamento Cromossômico , DNA Bacteriano/genética , Nanotecnologia , RNA Guia de Cinetoplastídeos/genética , Imagem Individual de Molécula
4.
ACS Infect Dis ; 2(5): 322-8, 2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27627201

RESUMO

Resistance to life-saving antibiotics increases rapidly worldwide, and multiresistant bacteria have become a global threat to human health. Presently, the most serious threat is the increasing spread of Enterobacteriaceae carrying genes coding for extended spectrum ß-lactamases (ESBL) and carbapenemases on highly mobile plasmids. We here demonstrate how optical DNA maps of single plasmids can be used as fingerprints to trace plasmids, for example, during resistance outbreaks. We use the assay to demonstrate a potential transmission route of an ESBL-carrying plasmid between bacterial strains/species and between patients, during a polyclonal outbreak at a neonatal ward at Sahlgrenska University Hospital (Gothenburg, Sweden). Our results demonstrate that optical DNA mapping is an easy and rapid method for detecting the spread of plasmids mediating resistance. With the increasing prevalence of multiresistant bacteria, diagnostic tools that can aid in solving ongoing routes of transmission, in particular in hospital settings, will be of paramount importance.


Assuntos
Antibacterianos/farmacologia , Infecção Hospitalar/microbiologia , DNA Bacteriano/genética , Farmacorresistência Bacteriana , Infecções por Enterobacteriaceae/microbiologia , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Plasmídeos/genética , Surtos de Doenças , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/metabolismo , Hospitais/estatística & dados numéricos , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos/metabolismo , Suécia/epidemiologia
5.
Sci Rep ; 6: 30410, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27460437

RESUMO

The rapid spread of antibiotic resistance - currently one of the greatest threats to human health according to WHO - is to a large extent enabled by plasmid-mediated horizontal transfer of resistance genes. Rapid identification and characterization of plasmids is thus important both for individual clinical outcomes and for epidemiological monitoring of antibiotic resistance. Toward this aim, we have developed an optical DNA mapping procedure where individual intact plasmids are elongated within nanofluidic channels and visualized through fluorescence microscopy, yielding barcodes that reflect the underlying sequence. The assay rapidly identifies plasmids through statistical comparisons with barcodes based on publicly available sequence repositories and also enables detection of structural variations. Since the assay yields holistic sequence information for individual intact plasmids, it is an ideal complement to next generation sequencing efforts which involve reassembly of sequence reads from fragmented DNA molecules. The assay should be applicable in microbiology labs around the world in applications ranging from fundamental plasmid biology to clinical epidemiology and diagnostics.


Assuntos
Código de Barras de DNA Taxonômico/métodos , DNA/química , Farmacorresistência Bacteriana/genética , Microfluídica/métodos , Imagem Óptica/métodos , Plasmídeos/genética , Bactérias/genética , Corantes Fluorescentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...