Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 600(19): 4325-4345, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030507

RESUMO

The tachykinin peptides include substance P (SP), neurokinin A and neurokinin B, which interact with three G-protein-coupled neurokinin receptors, NK1Rs, NK2Rs and NK3Rs, respectively. Whereas high densities of NK3Rs have been detected in the basolateral amygdala (BLA), the functions of NK3Rs in this brain region have not been determined. We found that activation of NK3Rs by application of the selective agonist, senktide, persistently excited BLA principal neurons. NK3R-elicited excitation of BLA neurons was mediated by activation of a non-selective cation channel and depression of the inwardly rectifying K+ (Kir) channels. With selective channel blockers and knockout mice, we further showed that NK3R activation excited BLA neurons by depressing the G protein-activated inwardly rectifying K+ (GIRK) channels and activating TRPC4 and TRPC5 channels. The effects of NK3Rs required the functions of phospholipase Cß (PLCß), but were independent of intracellular Ca2+ release and protein kinase C. PLCß-mediated depletion of phosphatidylinositol 4,5-bisphosphate was involved in NK3R-induced excitation of BLA neurons. Microinjection of senktide into the BLA of rats augmented fear-potentiated startle (FPS) and this effect was blocked by prior injection of the selective NK3R antagonist SB 218795, suggesting that activation of NK3Rs in the BLA increased FPS. We further showed that TRPC4/5 and GIRK channels were involved in NK3R-elicited facilitation of FPS. Our results provide a cellular and molecular mechanism whereby NK3R activation excites BLA neurons and enhances FPS. KEY POINTS: Activation of NK3 receptors (NK3Rs) facilitates the excitability of principal neurons in rat basolateral amygdala (BLA). NK3R-induced excitation is mediated by inhibition of GIRK channels and activation of TRPC4/5 channels. Phospholipase Cß and depletion of phosphatidylinositol 4,5-bisphosphate are necessary for NK3R-mediated excitation of BLA principal neurons. Activation of NK3Rs in the BLA facilitates fear-potentiated startle response. GIRK channels and TRPC4/5 channels are involved in NK3R-mediated augmentation of fear-potentiated startle.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Receptores da Neurocinina-3 , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Medo , Camundongos , Neurocinina A/metabolismo , Neurocinina B/metabolismo , Neurocinina B/farmacologia , Fosfatidilinositóis , Fosfolipases/metabolismo , Proteína Quinase C/metabolismo , Ratos , Receptores da Neurocinina-3/metabolismo , Reflexo de Sobressalto , Substância P/metabolismo , Substância P/farmacologia , Canais de Cátion TRPC/metabolismo
2.
J Physiol ; 599(12): 3101-3119, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33871877

RESUMO

KEY POINTS: Activation of V1a vasopressin receptors facilitates neuronal excitability in the medial nucleus of central amygdala (CeM) V1a receptor activation excites about 80% CeM neurons by opening a cationic conductance and about 20% CeM neurons by suppressing an inwardly rectifying K+ (Kir) channel The cationic conductance activated by V1a receptors is identified as TRPC5 channels PLCß-mediated depletion of PIP2 is involved in V1a receptor-elicited excitation of CeM neurons Intracellular Ca2+ release and PKC are unnecessary for V1a receptor-mediated excitation of CeM neurons ABSTRACT: Arginine vasopressin (AVP) serves as a hormone in the periphery to modulate water homeostasis and a neuromodulator in the brain to regulate a diverse range of functions including anxiety, social behaviour, cognitive activities and nociception. The amygdala is an essential brain region involved in modulating defensive and appetitive behaviours, pain and alcohol use disorders. Whereas activation of V1a receptors in the medial nucleus of the central amygdala (CeM) increases neuronal excitability, the involved ionic and signalling mechanisms have not been determined. We found that activation of V1a receptors in the CeM facilitated neuronal excitability predominantly by opening TRPC5 channels, although AVP excited about one fifth of the CeM neurons via suppressing an inwardly rectifying K+ (Kir) channel. G proteins and phospholipase Cß (PLCß) were required for AVP-elicited excitation of CeM neurons, whereas intracellular Ca2+ release and the activity of protein kinase C were unnecessary. Prevention of the depletion of phosphatidylinositol 4,5-bisphosphate (PIP2 ) blocked AVP-induced excitation of CeM neurons, suggesting that PLCß-mediated depletion of PIP2 is involved in AVP-mediated excitation of CeM neurons. Our results may provide a cellular and molecular mechanism to explain the anxiogenic effects of AVP in the amygdala.


Assuntos
Alcoolismo , Núcleo Central da Amígdala , Humanos , Neurônios , Fosfatidilinositol 4,5-Difosfato , Fosfolipase C beta , Canais de Cátion TRPC , Vasopressinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...