Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(7): e18171, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37519722

RESUMO

Surface water pollution caused by the discharge of effluents from industrial estates has become a major concern for Dhaka (Bangladesh). This study aims to have a concise look at the severe river water pollution, mainly from effluents discharged from the tannery village. Effluent samples were collected from five ejected points, including the central effluent treatment plant (CETP), twenty adjacent river water, and two pond water nearby Hemayetpur, Savar. Thirty-one parameters have been observed at these sampling points for three seasons, from April 2021 to January 2022. The results obtained from water quality indices, i.e., water quality index (WQI), entropy water quality index (EWQI), and irrigation water quality index (IWQI), show that most studied surface water samples ranked "unsuitable" for consumption, irrigation, and anthropogenic purposes. The highest health risk was observed downstream of Hemayetpur city at the Savar CETP discharge site, indicating higher levels of heavy metal in the river water following the tannery village. Carcinogenic and non-carcinogenic human health risks could be triggered mainly by water consumption as concentrations of arsenic (As), chromium (Cr), nickel (Ni), and lead (Pb) exceeded the upper benchmark of 1 × 10-4 for adults and children. The results of the carcinogenic risk assessment revealed that children were more vulnerable to health hazards, and quick corrective action is required to control the increased levels of heavy metals at all sample locations. Therefore, through bioaccumulation, human health and the environment are affected in these areas. Using river water for consumption, household work, or even irrigation purposes is not advisable. This study's result highlighted that properly implementing compatible policies and programs is required to improve effluent treatment methods and provide biodegradability to the Dhaleshwari River.

2.
Chemosphere ; 332: 138806, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37137398

RESUMO

Water pollution is a worldwide concern that has growing severe in developed and developing nations. Increasing groundwater pollution threatening both the physical and environmental health of billions of people as well as economic progress. Consequently, hydrogeochemistry, water quality and potential health risk assessment is crucial for water resource management. The study area comprises Jamuna Floodplain (Holocene deposit) area in the west and the Madhupur tract (Pleistocene deposit) area in the eastern part. Total 39 groundwater samples were collected from the study area and were analyzed for physicochemical parameters, hydrogeochemical, trace metals, and isotopic composition. The water types are mainly Ca-HCO3- to Na-HCO3- types. The isotopic compositions (δ18O‰ and δ2H‰) analysis traces the recent recharge in Floodplain area from rainwater and no recent recharge in Madhupur tract. The concentration of NO3-, As, Cr, Ni, Pb, Fe, and Mn in shallow and intermediate aquifer at the Floodplain area exceed the WHO-2011 permissible limit and is lower at deep Holocene and Madhupur tract aquifer. The integrated weighted water quality index (IWQI) exposed groundwater from shallow and intermediate aquifer are unsuitable for drinking and deep Holocene aquifer and Madhupur tract are suitable for drinking purposes. PCA analysis confirmed that anthropogenic activity is dominant in shallow and intermediate aquifers. The non-carcinogenic and carcinogenic risk for adults and children is due to oral and dermal exposure. The non-carcinogenic risk evaluation revealed that the mean hazard index (HI) values range from 0.009742 to 16.37 for adults and 0.0124-20.83 for children, respectively, and most groundwater samples from shallow and intermediate aquifers exceed the permissible limit (HI>1). The carcinogenic risk ranges from 2.71 × 10-6-0.014 for adults and 3.44 × 10-6-0.017 for children via oral consumption and 7.09 × 10-11-1.18 × 10-6 for adults and 1.25 × 10-10-2.09 × 10-6 for children via dermal exposure. Spatial distribution shows the presence of trace metal and associated health risk is high in shallow and intermediate aquifer (Holocene) than in the deep (Holocene) Madhupur tract (Pleistocene). The study implies that effective water management will ensure safe drinking water for the future generation of people.


Assuntos
Água Subterrânea , Oligoelementos , Poluentes Químicos da Água , Adulto , Criança , Humanos , Monitoramento Ambiental , Bangladesh , Poluentes Químicos da Água/análise , Água Subterrânea/química , Qualidade da Água , Oligoelementos/análise
3.
Environ Res ; 217: 114729, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36343718

RESUMO

The interaction between water vapor and natural/anthropogenic airborne particles deposits a massive amount of trace elements in the ecosystem. As the principal source region of the Indian monsoon originated from the Bay of Bengal, atmospheric trace elements in Bangladesh have impacted atmospheric wet deposition along the pathway, even reaching the headwaters in the Asian water tower. However, no study reports the atmospheric wet deposition of trace elements at the spatiotemporal scale. Thus, this study investigated the concentration, sources, and deposition of eighteen trace elements (Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Rb, Sr, Mo, Cd, Sn, Sb, Ba, and Pb) from 232 precipitation samples at four sites in Bangladesh. Results showed that the VWM concentrations of the eighteen measured trace elements ranged from 0.03 to 535.6 µg L-1. Zn, Fe, and Al were the principal elements of the atmosphere at four sites with mean values of 207.9 ± 227.8, 18.2 ± 9.3, and 16.3 ± 6.8 µg L-1, respectively. Besides, the eighteen trace elements showed significant variation in spatial scale with distinct seasonality. Enrichment factors of Zn, Sb, and Cd indicated serious anthropogenic influences. The major sources of trace elements were fossil fuel combustion, brick kilns, crustal dust, fugitive Pb, metal smelters, and battery recycling. Both the concentration and precipitation amount played a pivotal role in the deposition. Most of the air masses during the monsoon season came from marine sources passing over southern India and Sri Lanka. Meanwhile, the air masses during the non-monsoon season were from West Asia and the northwestern Indian subcontinent. The air masses are transported over a long range and deposit massive amounts of particulate matter in the Third Pole Himalayan region. This first-hand work on spatiotemporal variation provides a reference dataset for future targeting of the scientific community and policymakers for the development of strategies and action plans.


Assuntos
Poluentes Atmosféricos , Oligoelementos , Oligoelementos/análise , Poluentes Atmosféricos/análise , Bangladesh , Ecossistema , Cádmio , Chumbo , Monitoramento Ambiental/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA