Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 659: 905-913, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38219309

RESUMO

It is certainly one of the most feasible ways to extract fresh water from seawater in the face of the current depletion of fresh water resources. Although solar energy as a heat source for desalination is the cleanest and most abundant way, its intermittent and seasonal also poses an obstacle to its practical application. In order to solve the above-mentioned issues, we prepared a series of phase change composites (PCCs) with excellent light-absorbing and magnetic properties by growing MIL-101(Fe) in situ on cotton fabric. All-day desalination through the synergistic action of phase change material (PCM) and magnetic particles. The evaporation rate of PCC can reach 2.76 kg m-2h-1 with an evaporation efficiency of 90.19 % under one sunlight condition. The evaporation rate of sea water under the synergistic effect of magnetic particles and PCM reached 4.53 kg m-2h-1 in the absence of sunlight. This paper provides a new approach to all-day desalination without contact heating.

2.
Nanomicro Lett ; 16(1): 57, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110610

RESUMO

The severe dependence of traditional phase change materials (PCMs) on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios. Here, we introduced metal ions to induce the self-assembly of MXene nanosheets and achieve their ordered arrangement by combining suction filtration and rapid freezing. Subsequently, a series of MXene/ K+/paraffin wax (PW) phase change composites (PCCs) were obtained via vacuum impregnation in molten PW. The prepared MXene-based PCCs showed versatile applications from macroscale technologies, successfully transforming solar, electric, and magnetic energy into thermal energy stored as latent heat in the PCCs. Moreover, due to the absence of binder in the MXene-based aerogel, MK3@PW exhibits a prime solar-thermal conversion efficiency (98.4%). Notably, MK3@PW can further convert the collected heat energy into electric energy through thermoelectric equipment and realize favorable solar-thermal-electric conversion (producing 206 mV of voltage with light radiation intensity of 200 mw cm-2). An excellent Joule heat performance (reaching 105 °C with an input voltage of 2.5 V) and responsive magnetic-thermal conversion behavior (a charging time of 11.8 s can achieve a thermal insulation effect of 285 s) for contactless thermotherapy were also demonstrated by the MK3@PW. Specifically, as a result of the ordered arrangement of MXene nanosheet self-assembly induced by potassium ions, MK3@PW PCC exhibits a higher electromagnetic shielding efficiency value (57.7 dB) than pure MXene aerogel/PW PCC (29.8 dB) with the same MXene mass. This work presents an opportunity for the multi-scene response and practical application of PCMs that satisfy demand of next-generation multifunctional PCCs.

3.
Adv Sci (Weinh) ; 10(14): e2206835, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36950746

RESUMO

Developing ultimate electromagnetic interference (EMI) shielding materials that can simultaneously upgrade the quality of generated electricity and the light-thermal-electric conversion efficiency based on traditional thermoelectric devices is crucially desired. Herein, a series of flexible multilayered phase change films (PCFs) is developed by a simple and novel origami strategy. The PCFs are first reported to improve the light-thermal-electric conversion efficiency by as high as 11.3%. Simultaneously, the PCFs could significantly upgrade the generated electricity on average voltage (27.3%), average current (23.8%), and lasting power outputs by 2010 times from microwatts to milliwatts. Besides, the EMI shielding efficiency of PCFs could be tuned from 39.2 to 71.9 dB by the origami process, the wide-range EMI shielding performance could be suitable for varying occasions. Overall, this work provides a promising solution for both the preparation of multifunctional materials, high-efficiency solar energy harvesting and upgrading electricity generation, which shows broad application prospects in EMI shielding, energy storage, and conversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...