Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioact Mater ; 36: 490-507, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39055351

RESUMO

Immunogenic cell death (ICD) represents a modality of apoptosis distinguished by the emanation of an array of damage-related molecular signals. This mechanism introduces a novel concept in the field of contemporary tumor immunotherapy. The inception of reactive oxygen species (ROS) within tumor cells stands as the essential prerequisite and foundation for ICD induction. The formulation of highly efficacious photodynamic therapy (PDT) nanomedicines for the successful induction of ICD is an area of significant scientific inquiry. In this work, we devised a ROS-responsive and triple-synergistic mitochondria-targeted polymer micelle (CAT/CPT-TPP/PEG-Ce6, CTC) that operates with multistage amplification of ROS to achieve the potent induction of ICD. Utilizing an "all-in-one" strategy, we direct both the PDT and chemotherapeutic units to the mitochondria. Concurrently, a multistage cyclical amplification that caused by triple synergy strategy stimulates continuous, stable, and adequate ROS generation (domino effect) within the mitochondria of cells. Conclusively, influenced by ROS, tumor cell-induced ICD is effectively activated, remodeling immunogenicity, and enhancing the therapeutic impact of PDT when synergized with chemotherapy. Empirical evidence from in vitro study substantiates that CTC micelles can efficiently provoke ICD, catalyzing CRT translocation, the liberation of HMGB1 and ATP. Furthermore, animal trials corroborate that polymer micelles, following tail vein injection, can induce ICD, accumulate effectively within tumor tissues, and markedly inhibit tumor growth subsequent to laser irradiation. Finally, transcriptome analysis was carried out to evaluate the changes in tumor genome induced by CTC micelles. This work demonstrates a novel strategy to improve combination immunotherapy using nanotechnology.

2.
Colloids Surf B Biointerfaces ; 242: 114109, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39047644

RESUMO

Photoimmunotherapy represents an innovative approach to enhancing the efficiency of immunotherapy in cancer treatment. This approach involves the fusion of immunotherapy and phototherapy (encompassing techniques like photodynamic therapy (PDT) and photothermal therapy (PTT)). Boron-dipyrromethene (BODIPY) has the potential to trigger immunotherapy owing to its excellent PD and PT efficiency. However, the improvements in water solubility, bioavailability, PD/PT combined efficiency, and tumor tissue targeting of BODIPY require introduction of suitable carriers for potential practical application. Herein, a disulfide bond-based hollow mesoporous organosilica (HMON) with excellent biocompatibility and GSH-responsive degradation properties was used as a carrier to load a bithiophene Aza-BODIPY dye (B5), constructing a sample chemotherapy reagent-free B5@HMON nanoplatform achieving triple-synergistic photoimmunotherapy. HMON, involving disulfide bond, is utilized to improve water solubility, tumor tissue targeting, and PD efficiency by depleting GSH and enhancing host-guest interaction between B5 and HMO. The study reveals that HMON's large specific surface area and porous properties significantly enhance the light collection and oxygen adsorption capacity. The HMON's rich mesoporous structure and internal cavity achieved a loading rate of B5 at 11 %. It was found that the triple-synergistic nanoplatform triggered a stronger anti-tumor immune response, including tumor invasion, cytokine production, calreticulin translocation, and dendritic cell maturation, eliciting specific tumor-specific immunological responses in vivo and in vitro. The BALB/c mouse model with 4T1 tumors was used to assess tumor suppression efficiency in vivo, showing that almost all tumors in the B5@HMON group disappeared after 14 days. Such a simple chemotherapy reagent-free B5@HMON nanoplatform achieved triple-synergistic photoimmunotherapy.

3.
Mikrochim Acta ; 190(8): 341, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37530902

RESUMO

A novel stimulus-responsive surface-enhanced Raman scattering (SERS) nanoprobe has been developed for sensitive glutathione (GSH) detection based on manganese dioxide (MnO2) core and silver/gold nanoparticles (Ag/Au NPs). The MnO2 core is not only capable to act as a scaffold to amplify the SERS signal via producing "hot spots", but also can be degraded in the presence of the target and thus greatly enhance the nanoprobe sensitivity for sensing of GSH. This approach enables a wide linear range from 1 to 100 µM with a 2.95 µM (3σ/m) detection limit. Moreover, the developed SERS nanoprobe represents great possibility in both sensitive detection of intracellular GSH and even can monitor the change of intracellular GSH level when the stimulant occurs. This sensing system not merely offers a novel strategy for sensitive sensing of GSH, but also provides a new avenue for other biomolecules detection.


Assuntos
Nanopartículas Metálicas , Ouro , Compostos de Manganês , Prata , Óxidos , Glutationa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...