Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37373294

RESUMO

Global warming is posing a threat to animals. As a large group of widely distributed poikilothermal animals, insects are liable to heat stress. How insects deal with heat stress is worth highlighting. Acclimation may improve the heat tolerance of insects, but the underlying mechanism remains vague. In this study, the high temperature of 39 °C was used to select the third instar larvae of the rice leaf folder Cnaphalocrocis medinalis, an important insect pest of rice, for successive generations to establish the heat-acclimated strain (HA39). The molecular mechanism of heat acclimation was explored using this strain. The HA39 larvae showed stronger tolerance to 43 °C than the unacclimated strain (HA27) persistently reared at 27 °C. The HA39 larvae upregulated a glucose dehydrogenase gene, CmGMC10, to decrease the reactive oxygen species (ROS) level and increase the survival rate under heat stress. The HA39 larvae maintained a higher activity of antioxidases than the HA27 when confronted with an exogenous oxidant. Heat acclimation decreased the H2O2 level in larvae under heat stress which was associated with the upregulation of CmGMC10. The rice leaf folder larvae may acclimate to global warming via upregulating CmGMC10 to increase the activity of antioxidases and alleviate the oxidative damage of heat stress.


Assuntos
Aquecimento Global , Mariposas , Animais , Glucose Desidrogenase , Peróxido de Hidrogênio , Larva/fisiologia , Mariposas/fisiologia , Aclimatação , Insetos
2.
BMC Genomics ; 21(1): 450, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32605538

RESUMO

BACKGROUND: The rice leaf folder Cnaphalocrocis medinalis Güenée is a serious insect pest of rice in Asia. This pest occurs in summer, and it is sensitive to high temperature. However, the larvae exhibit heat acclimation/adaptation. To understand the underlying mechanisms, we established a heat-acclimated strain via multigenerational selection at 39 °C. After heat shock at 41 °C for 1 h, the transcriptomes of the heat-acclimated (S-39) and unacclimated (S-27) larvae were sequenced, using the unacclimated larvae without exposure to 41 °C as the control. RESULTS: Five generations of selection at 39 °C led larvae to acclimate to this heat stress. Exposure to 41 °C induced 1160 differentially expressed genes (DEGs) between the heat-acclimated and unacclimated larvae. Both the heat-acclimated and unacclimated larvae responded to heat stress via upregulating genes related to sensory organ development and structural constituent of eye lens, whereas the unacclimated larvae also upregulated genes related to structural constituent of cuticle. Compared to unacclimated larvae, heat-acclimated larvae downregulated oxidoreductase activity-related genes when encountering heat shock. Both the acclimated and unacclimated larvae adjusted the longevity regulating, protein processing in endoplasmic reticulum, antigen processing and presentation, MAPK and estrogen signaling pathway to responsed to heat stress. Additionally, the unacclimated larvae also adjusted the spliceosome pathway, whereas the heat-acclimated larvae adjusted the biosynthesis of unsaturated fatty acids pathway when encountering heat stress. Although the heat-acclimated and unacclimated larvae upregulated expression of heat shock protein genes under heat stress including HSP70, HSP27 and CRYAB, their biosynthesis, metabolism and detoxification-related genes expressed differentially. CONCLUSIONS: The rice leaf folder larvae could acclimate to a high temperature via multigenerational heat selection. The heat-acclimated larvae induced more DEGs to response to heat shock than the unacclimated larvae. The changes in transcript level of genes were related to heat acclimation of larvae, especially these genes in sensory organ development, structural constituent of eye lens, and oxidoreductase activity. The DEGs between heat-acclimated and unacclimated larvae after heat shock were enriched in the biosynthesis and metabolism pathways. These results are helpful to understand the molecular mechanism underlying heat acclimation of insects.


Assuntos
Mariposas/crescimento & desenvolvimento , Termotolerância/genética , Transcriptoma , Animais , Perfilação da Expressão Gênica , Larva/metabolismo , Mariposas/enzimologia , Mariposas/genética , Mariposas/metabolismo , Oxirredutases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...