Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrasonics ; 126: 106835, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36049343

RESUMO

Percussive ultrasonic drills participate in asteroid exploration missions. Since space environments are complex and working loads vary dramatically, it is necessary to design a drive that better matches the percussive ultrasonic drill to make it achieve high-speed drilling with low power consumption. Impedance characteristics under different load conditions and the load varying in one drilling cycle are investigated based on analyzing the working principle of the percussive ultrasonic drill. An ultrasonic drill driver with automatic scanning resonant frequency and digital phase-locked loop frequency tracking control is designed according to the load characteristics. Series capacitance impedance matching ultrasonic drills is experimentally studied. Vibration amplitude and impedance characteristics of the ultrasonic drill driven by the designed driver are measured to evaluate the frequency tracking ability and the impedance matching. Finally, ultrasonic drilling experiments are conducted in room, low, and high temperature environments to investigate the driving performance. Under room temperature and 5 N drilling pressure, the speed of ultrasonic drilling into soft sandstone is 52 mm/min, and the power consumption is less than 70 W. The experimental results indicate that the designed driver can drive the percussive ultrasonic drill to achieve stable and high-speed drilling with low power consumption and low drilling pressure.


Assuntos
Temperatura Alta , Ultrassom , Impedância Elétrica
2.
Adv Sci (Weinh) ; 9(29): e2203054, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35981889

RESUMO

Amphibious robots can undertake various tasks in terrestrial and aquatic environments for their superior environmental compatibility. However, the existing amphibious robots usually utilize multi-locomotion systems with transmission mechanisms, leading to complex and bulky structures. Here, a miniature amphibious robot based on vibration-driven locomotion mechanism is developed. The robot has two unique rigid-flexible hybrid modules (RFH-modules), in which a soft foot and a flexible fin are arranged on a rigid leg to conduct vibrations from an eccentric motor to the environment. Then, it can run on ground with the soft foot adopting the friction locomotion mechanism and swim on water with the flexible fin utilizing the vibration-induced flow mechanism. The robot is untethered with a compact size of 75 × 95 × 21 mm3 and a small weight of 35 g owing to no transmission mechanism or joints. It realizes the maximum speed of 815 mm s-1 on ground and 171 mm s-1 on water. The robot, actuated by the RFH-modules based on vibration-driven locomotion mechanism, exhibits the merits of miniature structure and fast movements, indicating its great potential for applications in narrow amphibious environments.


Assuntos
Robótica , Locomoção , Natação , Vibração , Água
3.
Sensors (Basel) ; 18(3)2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29518963

RESUMO

A novel U-shaped piezoelectric ultrasonic motor that mainly focused on miniaturization and high power density was proposed, fabricated, and tested in this work. The longitudinal vibrations of the transducers were excited to form the elliptical movements on the driving feet. Finite element method (FEM) was used for design and analysis. The resonance frequencies of the selected vibration modes were tuned to be very close to each other with modal analysis and the movement trajectories of the driving feet were gained with transient simulation. The vibration modes and the mechanical output abilities were tested to evaluate the proposed motor further by a prototype. The maximum output speed was tested to be 416 mm/s, the maximum thrust force was 21 N, and the maximum output power was 5.453 W under frequency of 29.52 kHz and voltage of 100 Vrms. The maximum output power density of the prototype reached 7.59 W/kg, which was even greater than a previous similar motor under the exciting voltage of 200 Vrms. The proposed motor showed great potential for linear driving of large thrust force and high power density.

4.
Sensors (Basel) ; 18(3)2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29518964

RESUMO

Inspired by a way of rowing, a new piezoelectric driving quadruped micro-robot operating in bending-bending hybrid vibration modes was proposed and tested in this work. The robot consisted of a steel base, four steel connecting pins and four similar driving legs, and all legs were bonded by four piezoelectric ceramic plates. The driving principle is discussed, which is based on the hybrid of first order vertical bending and first order horizontal bending vibrations. The bending-bending hybrid vibration modes motivated the driving foot to form an elliptical trajectory in space. The vibrations of four legs were used to provide the driving forces for robot motion. The proposed robot was fabricated and tested according to driving principle. The vibration characteristics and elliptical movements of the driving feet were simulated by FEM method. Experimental tests of vibration characteristics and mechanical output abilities were carried out. The tested resonance frequencies and vibration amplitudes agreed well with the FEM calculated results. The size of robot is 36 mm × 98 mm × 14 mm, its weight is only 49.8 g, but its maximum load capacity achieves 200 g. Furthermore, the robot can achieve a maximum speed of 33.45 mm/s.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...