Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(12)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38930818

RESUMO

This study prepared sulfonated Camellia oleifera shell biochar using Camellia oleifera shell agricultural waste as a carbon source, and evaluated its performance as a catalyst for preparing biodiesel. The biochar obtained from carbonizing Camellia oleifera shells at 500 °C for 2 h serves as the carbon skeleton, and then the biochar is sulfonated with chlorosulfonic acid. The sulfonic acid groups are mainly grafted onto the surface of Camellia oleifera shell biochar through covalent bonding to obtain sulfonic acid type biochar catalysts. The catalysts were characterized by Scanning Electron Microscope (SEM), X-ray diffraction (XRD), Nitrogen adsorption-desorption Brunel-Emmett-Taylor Theory (BET), and Fourier-transform infrared spectroscopy (FT-IR). The acid density of the sulfonated Camellia oleifera fruit shell biochar catalyst is 2.86 mmol/g, and the specific surface area is 2.67 m2/g, indicating high catalytic activity. The optimal reaction conditions are 4 wt% catalyst with a 6:1 alcohol to oil ratio. After esterification at 70 °C for 2 h, the yield of biodiesel was 91.4%. Under the optimal reaction conditions, after four repeated uses of the catalyst, the yield of biodiesel still reached 90%. Therefore, sulfonated Camellia oleifera shell biochar is a low-cost, green, non-homogeneous catalyst with great potential for biodiesel production by esterification reaction in future development.


Assuntos
Biocombustíveis , Camellia , Carvão Vegetal , Camellia/química , Carvão Vegetal/química , Catálise , Ácidos Sulfônicos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Esterificação , Difração de Raios X
2.
Metabolites ; 14(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38668304

RESUMO

The quality of crops is closely associated with their geographical location and yield, which is reflected in the composition of their metabolites. Hence, we employed GC-MS pseudotargeted metabolomics to investigate the metabolic characteristics of high-, medium-, and low-yield Nicotiana tabacum (tobacco) leaves from the Bozhou (sweet honey flavour) and Shuicheng (light flavour) regions of Guizhou Province. A total of 124 metabolites were identified and classified into 22 chemical categories. Principal component analysis revealed that the geographical location exerted a greater influence on the metabolic profiling than the yield. Light-flavoured tobacco exhibited increased levels of sugar metabolism- and glycolysis-related intermediate products (trehalose, glucose-6-phosphate, and fructose-6-phosphate) and a few amino acids (proline and leucine), while sweet honey-flavoured tobacco exhibited increases in the tricarboxylic acid cycle (TCA cycle) and the phenylpropane metabolic pathway (p-hydroxybenzoic acid, caffeic acid, and maleic acid). Additionally, metabolite pathway enrichment analysis conducted at different yields and showed that both Shuicheng and Bozhou exhibited changes in six pathways and four of them were the same, mainly C/N metabolism. Metabolic pathway analysis revealed higher levels of intermediates related to glycolysis and sugar, amino acid, and alkaloid metabolism in the high-yield samples, while higher levels of phenylpropane in the low-yield samples. This study demonstrated that GC-MS pseudotargeted metabolomics-based metabolic profiling can be used to effectively discriminate tobacco leaves from different geographical locations and yields, thus facilitating a better understanding of the relationship between metabolites, yield, and geographical location. Consequently, metabolic profiles can serve as valuable indicators for characterizing tobacco yield and geographical location.

3.
Molecules ; 29(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38474517

RESUMO

Nitrogen and phosphorus play essential roles in ecosystems and organisms. However, with the development of industry and agriculture in recent years, excessive N and P have flowed into water bodies, leading to eutrophication, algal proliferation, and red tides, which are harmful to aquatic organisms. Biochar has a high specific surface area, abundant functional groups, and porous structure, which can effectively adsorb nitrogen and phosphorus in water, thus reducing environmental pollution, achieving the reusability of elements. This article provides an overview of the preparation of biochar, modification methods of biochar, advancements in the adsorption of nitrogen and phosphorus by biochar, factors influencing the adsorption of nitrogen and phosphorus in water by biochar, as well as reusability and adsorption mechanisms. Furthermore, the difficulties encountered and future research directions regarding the adsorption of nitrogen and phosphorus by biochar were proposed, providing references for the future application of biochar in nitrogen and phosphorus adsorption.


Assuntos
Fósforo , Poluentes Químicos da Água , Fósforo/química , Águas Residuárias , Adsorção , Nitrogênio/química , Ecossistema , Carvão Vegetal/química , Água , Poluentes Químicos da Água/química
4.
Sci Rep ; 14(1): 1710, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243055

RESUMO

The interactions between microbes and plants are governed by complex chemical signals, which can forcefully affect plant growth and development. Here, to understand how microbes influence Houttuynia cordata Thunb. plant growth and its secondary metabolite through chemical signals, we established the interaction between single bacteria and a plant. We inoculated H. cordata seedlings with bacteria isolated from their roots. The results showed that the total fresh weight, the total dry weight, and the number of lateral roots per seedling in the P. fluorescens-inoculated seedlings were 174%, 172% and 227% higher than in the control seedlings. Pseudomonas fluorescens had a significant promotional effect of the volatile contents compared to control, with ß-myrcene increasing by 192%, 2-undecanone by 203%, decanol by 304%, ß-caryophyllene by 197%, α-pinene by 281%, bornyl acetate by 157%, γ-terpinene by 239% and 3-tetradecane by 328% in P. fluorescens-inoculated H. cordata seedlings. the contents of chlorogenic acid, rutin, quercitin, and afzelin were 284%, 154%, 137%, and 213% higher than in control seedlings, respectively. Our study provided basic data to assess the linkages between endophytic bacteria, plant phenotype and metabolites of H. cordata to provide an insight into P. fluorescens use as biological fertilizer, promoting the synthesis of medicinal plant compounds.


Assuntos
Medicamentos de Ervas Chinesas , Houttuynia , Plantas Medicinais , Pseudomonas fluorescens , Houttuynia/química , Extratos Vegetais , Plantas Medicinais/química , Medicamentos de Ervas Chinesas/química
6.
BMC Plant Biol ; 23(1): 478, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37807055

RESUMO

BACKGROUND: Auxin plays an important role in plant resistance to abiotic stress. The modulation of gene expression by Auxin response factors (ARFs) and the inhibition of auxin/indole-3-acetic acid (Aux/IAA) proteins play crucial regulatory roles in plant auxin signal transduction. However, whether the stress resistance of Masson pine (Pinus massoniana), as a representative pioneer species, is related to Aux/IAA and ARF genes has not been thoroughly studied and explored. RESULTS: The present study provides preliminary evidence for the regulatory role of the PmaIAA27 gene in abiotic stress response in Masson pine. We investigated the effects of drought and hormone treatments on Masson pine by examining the expression patterns of PmaIAA27 and PmaARF15 genes. Subsequently, we conducted gene cloning, functional testing using transgenic tobacco, and explored gene interactions. Exogenous auxin irrigation significantly downregulated the expression of PmaIAA27 while upregulating PmaARF15 in Masson pine seedlings. Moreover, transgenic tobacco with the PmaIAA27 gene exhibited a significant decrease in auxin content compared to control plants, accompanied by an increase in proline content - a known indicator of plant drought resistance. These findings suggest that overexpression of the PmaIAA27 gene may enhance drought resistance in Masson pine. To further investigate the interaction between PmaIAA27 and PmaARF15 genes, we performed bioinformatics analysis and yeast two-hybrid experiments which revealed interactions between PB1 structural region of PmaARF15 and PmaIAA27. CONCLUSION: The present study provides new insights into the regulatory functions of Aux/IAA and ARF genes in Masson pine. Overexpression of PmaIAA gene may have negative effects on the growth of Masson pine, but may improve the drought resistance. Therefore, this study has great application prospects.


Assuntos
Pinus , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secas , Pinus/genética , Pinus/metabolismo , Ácidos Indolacéticos/metabolismo , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Plants (Basel) ; 12(20)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37896106

RESUMO

High-temperature stress is the main environmental stress that restricts the growth and development of woody plants, and the growth and development of woody plants are affected by high-temperature stress. The influence of high temperature on woody plants varies with the degree and duration of the high temperature and the species of woody plants. Woody plants have the mechanism of adapting to high temperature, and the mechanism for activating tolerance in woody plants mainly counteracts the biochemical and physiological changes induced by stress by regulating osmotic adjustment substances, antioxidant enzyme activities and transcription control factors. Under high-temperature stress, woody plants ability to perceive high-temperature stimuli and initiate the appropriate physiological, biochemical and genomic changes is the key to determining the survival of woody plants. The gene expression induced by high-temperature stress also greatly improves tolerance. Changes in the morphological structure, physiology, biochemistry and genomics of woody plants are usually used as indicators of high-temperature tolerance. In this paper, the effects of high-temperature stress on seed germination, plant morphology and anatomical structure characteristics, physiological and biochemical indicators, genomics and other aspects of woody plants are reviewed, which provides a reference for the study of the heat-tolerance mechanism of woody plants.

8.
Front Chem ; 11: 1211989, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408555

RESUMO

The innovative adsorbents known as the Metal-organic Framework (MOFs) had a high specific surface area, various structural types, and good chemical stability. MOFs have been produced through hydrothermal, mechanochemical, microwave-assisted, gelation, and other synthesis methods, and the solvothermal process is one of them that researchers frequently utilize. The UiO materials have a more comprehensive application potential than different subtypes of MOFs among the numerous MOFs that have been synthesized. The synthesis of MOFs and their composites, as well as the adsorption characteristics of UiO materials in the adsorption of various heavy metal ions, have all been examined and summarized in this study.

9.
ACS Omega ; 8(23): 20730-20738, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37332809

RESUMO

Potassium (K) plays important roles in the energy and substance conversion of tobacco metabolism and is also regarded as one of the important indicators of tobacco quality evaluation. However, the K quantitative analytical method shows poor performance in terms of being easy-to-use, cost-effective, and portable. Here, we developed a rapid and simple method for the determination of K content in flue-cured tobacco leaves, including water extraction with 100 °C heating, purification with solid-phase extraction (SPE), and analysis with portable reflectometric spectroscopy based on K test strips. The method development consisted of optimization of the extraction and test strip reaction conditions, screening of SPE sorbent materials, and evaluation of the matrix effect. Under the optimum conditions, good linearity was observed in 0.20-0.90 mg/mL with a correlation coefficient >0.999. The extraction recoveries were found to be in the range of 98.0-99.5% with a repeatability and reproducibility of 1.15-1.98% and 2.04-3.26%, respectively. The sample measured range was calculated to be 0.76-3.68% K. Excellent agreement was found in accuracy between the developed reflectometric spectroscopy method and the standard method. The developed method was applied to analyze the K content in different cultivars, and the content varied greatly among the samples with lowest and highest contents for Y28 and Guiyan 5 cultivars, respectively. This study can provide a reliable approach for K analysis, which may become available on-site in a quick on-farm test.

10.
Front Plant Sci ; 14: 1060747, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251764

RESUMO

Rosa chinensis cultivars with volatile aromas are important resources in the perfume industry. The four rose cultivars introduced to Guizhou province are rich in volatile substances. In this study, volatiles from four Rosa chinensis cultivars were extracted using headspace-solid phase microextraction (HS-SPME), and analyzed with two-dimensional gas chromatography quadrupole time of flight mass spectrometry (GC × GC-QTOFMS). A total of 122 volatiles were identified; the main compounds in these samples were benzyl alcohol, phenylethyl alcohol, citronellol, beta-myrcene and limonene. A total of 68, 78, 71, and 56 volatile compounds were identified in Rosa 'Blue River' (RBR), Rosa 'Crimson Glory' (RCG), Rosa 'Pink Panther' (RPP), and Rosa 'Funkuhr' (RF) samples, respectively. The total volatile contents were in the following order: RBR > RCG > RPP > RF. Four cultivars exhibited similar volatility profiles, with alcohols, alkanes, and esters as the major chemical groups, followed by aldehydes, aromatic hydrocarbons, ketones, benzene, and other compounds. Alcohols and aldehydes were quantitatively the two most abundant chemical groups that included the highest number and highest content of compounds. Different cultivars have different aromas, and RCG had high contents of phenyl acetate, rose oxide, trans-rose oxide, phenylethyl alcohol and 1,3,5-trimethoxybenzene, characterized by floral and rose descriptors. RBR contained a high content of phenylethyl alcohol, and RF contained a high content of 3,5-dimethoxytoluene. Hierarchical cluster analysis (HCA) of all volatiles showed that the three cultivars (RCG, RPP, and RF) had similar volatile characteristics and were significantly different from RBR. Differential metabolites among cultivars were screened based on the OPLS-DA model, and there were six main enriched pathways of differential metabolites: biosynthesis of secondary metabolites, monoterpenoid biosynthesis, metabolic pathways, limonene and pinene degradation, sesquiterpenoid and triterpenoid biosynthesis, and alpha-linolenic acid metabolism. The biosynthesis of secondary metabolites is the most differential metabolic pathway.

11.
J Fungi (Basel) ; 9(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108925

RESUMO

Studies on the dynamics of non-structural carbohydrates (NSCs) play an important role in understanding the mechanisms of plant responses to drought stress. The objective of this study was to assess the influence of ectomycorrhizal fungi (ECMF) on the content and distribution of NSCs in Pinus massoniana seedlings under different drought intensities and to further explore the possible mechanism by which ECMF enhances the stress resistance of host plants. We conducted a pot experiment using P. massoniana seedlings that were inoculated (M) or non-inoculated (NM) with Suillus luteus (Sl) under well-watered, moderate, and severe drought stress conditions. The results showed that drought significantly reduced the photosynthetic capacity of P. massoniana seedlings and inhibited their growth rate. P. massoniana could respond to different degrees of drought stress by increasing the accumulation of NSCs and increasing WUE. However, compared with well-watered treatment, NSCs consumption began to appear in the roots of NM due to the decrease in starch content under severe drought, whereas NSCs content in M seedlings was higher than that in the well-watered treatment, showing that the ability to maintain C balance was higher in M seedlings. Compared with NM, inoculation with Sl increased the growth rate and biomass of roots, stems, and leaves under moderate and severe drought. In addition, Sl can also improve the gas exchange parameters (net photosynthetic rate, transpiration rate, intercellular CO2 concentration and stomatal conductance) of P. massoniana seedlings compared with NM seedlings, which was conducive to the hydraulic regulation of seedlings and improved their C fixation capacity. Meanwhile, the content of NSCs in M seedlings was higher. Moreover, the soluble sugar content and SS/St ratio of leaves, roots, and whole plants were higher under drought stress after Sl inoculation, indicating that Sl could also change the C distribution mode, regulate more soluble sugar to respond to drought stress, which was conducive to improving the osmotic adjustment ability of seedlings, and providing more available C sources for plant growth and defense. Overall, inoculation with Sl could enhance the drought resistance of seedlings and promote their growth under drought stress by improving NSCs storage, increasing soluble sugar distribution, and improving the plant water balance of P. massoniana seedlings.

12.
J Mol Model ; 29(5): 131, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020092

RESUMO

CONTEXT: PARP-1 plays an important role in DNA repair and apoptosis, and PARP-1 inhibitors have shown to be effective in the treatment of several malignancies. To evaluate the function of new PARP-1 inhibitors as anticancer adjuvant medicines, 3D-QSAR, molecular docking, and molecular dynamics (MD) simulations of a sequence of dihydrodiazepinoindolone derivatives PARP-1 inhibitors were undertaken in this study. METHODS: In this paper, 43 PARP-1 inhibitors were studied in a three-dimensional quantitative structure-activity relationship (3D-QSAR) using comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA). CoMFA with q2 of 0.675 and r2 of 0.981 was achieved, as was CoMSIA with q2 of 0.755 and r2 of 0.992. The changed areas of these compounds are shown by steric, electrostatic, hydrophobic, and hydrogen-bonded acceptor field contour maps. Subsequently, molecular docking, and molecular dynamics simulations further confirmed that key residues Gly863 and Ser904 of PARP-1 are vital residues for protein interactions and their binding affinity. The effects of 3D-QSAR, molecular docking and molecular dynamics simulations supply a new route for the search of new PARP-1 inhibitors. Finally, we designed eight new compounds with exact activity and ADME/T properties.


Assuntos
Antineoplásicos , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Inibidores de Poli(ADP-Ribose) Polimerases , Relação Quantitativa Estrutura-Atividade , Antineoplásicos/química
13.
Front Chem ; 11: 1135193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007055

RESUMO

With the acceleration of industrialization and urbanization, global water resources have been polluted. Among the water pollutants, heavy metals have caused great harm to the environment and organisms. When the concentration of Cu2+ in water exceeds the standard, the intake of the human body will mainly damage the nervous system. We use MOF materials with high chemical stability, specific surface area, adsorption, and other unique properties to adsorb Cu2+. MOF-67 was prepared with various solvents, and a stronger magnetic response MOF-67 with the largest surface area and best crystal form were selected. It quickly adsorbs low-concentration Cu2+ in water to purify water quality. At the same time, it can be recovered promptly through an external magnetic field to avoid secondary pollution, which conforms to the concept of green environmental protection. When the initial concentration of Cu2+ is 50 mg/L for 30 min, the adsorption rate reaches 93.4%. The magnetic adsorbent can be reused three times.

14.
Metabolites ; 13(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36837898

RESUMO

The nutrient turnover of subtropical rhododendron forests is slow, natural regeneration is difficult, and the decomposition of litter is slow. Lignin, cellulose, and hemicellulose are the key factors affecting the decomposition rate of litters. In this study, the litters of three forest stands, namely evergreen broadleaf Rhododendron delavayi, evergreen broadleaf Rhododendron agastum, and deciduous broadleaf mixed forest, were taken as the research objects to explore the dynamic changes and effects of lignin, cellulose, and hemicellulose contents in litters of different stands under indoor artificial control measures. Exogenous nitrogen, phosphorus, alkaline substances, and microbial agents were added to decompose litters in the laboratory for 140 days. Our results showed that (1) the contents of lignin and cellulose in the litters of the three stands decreased significantly in the early stage of decomposition and the content of hemicellulose was stable, and (2) low concentrations of nitrogen and phosphorus can accelerate the degradation of lignin, cellulose, and hemicellulose in litters of the three stands and thus promote the decomposition of litters. This study provides basic data for the nutrient return of artificial intervention in subtropical rhododendron forests in China.

15.
Metabolites ; 13(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36677044

RESUMO

Low-molecular-weight organic acids (LMWOAs) are widely distributed in forests. Fresh leaves, litter, humus, and the topsoil layer of representative Rhododendron delavayi (RD), Rhododendron agastum (RA), and Rhododendron irroratum (RI) in the Baili Rhododendron National Forest Park were sampled to explore their seasonal changes. The contents of oxalic, tartaric, malic, citric, acetic, lactic, succinic, and formic acids in samples from different seasons were determined by high-performance liquid chromatography. The results showed that the composition and content of the LMWOAs in the fresh leaves, litter, humus, and topsoil layer of the rhododendrons were affected by the tree species, samples, and season. The main LMWOA was oxalic acid (the average content in the samples was 195.31 µg/g), followed by malic acid (the average content in the samples was 68.55 µg/g) and tartaric acid (the average content in the samples was 59.82 µg/g). Succinic acid had the lowest content; the average content in the samples was 18.40 µg/g. The LMWOAs of the RD were the highest (the average content in the samples was 517.42 µg/g), and the LMWOAs of the RI were the lowest (the average content in the samples was 445.18 µg/g). The LMWOAs in the three rhododendron forests were in the order of fresh leaves > litter > humus > soil layers. This study showed the seasonal distribution characteristics of LMWOAs in three evergreen broadleaf rhododendron forests, and the results provide a reference for ecosystem management and the protection of wild rhododendron forests.

16.
Plants (Basel) ; 11(17)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36079696

RESUMO

In heterogeneous landscapes with temporary water deficit characteristics in southwestern China, understanding the electrophysiological and morphological characteristics of Bletilla striata under different water conditions can help to better evaluate its suitability for planting plants in specific locations and guide planting and production. Using B. striata seedlings as experimental materials, the maximum field capacity (FC) was 75-80% (CK: control group), 50-60% FC (LS: light drought stress), 40-45% FC (MS: moderate drought stress), and 30-35% FC (SS: severe drought stress). In terms of physiological response, the activities of peroxidase (POD) and catalase (CAT) decreased under drought conditions, but the activity was well under the LS treatment, and the contents of proline (Pro) and malondialdehyde (MDA) increased. In terms of morphological responses, under drought conditions, root lengths of the rhizomes (except the LS treatment) were significantly reduced, the leaf lengths were reduced, and the biomass was significantly reduced. The stomatal size reached the maximum under the LS treatment, and the stomatal density gradually decreased with the increase in drought degree. In terms of electrophysiological responses, drought significantly decreased the net photosynthetic rate (PN) of B. striata, stomatal conductance (gs), and transpiration rate (Tr), but effectively increased the water use efficiency (WUE). The effective thickness of leaves of B. striata increased under drought conditions, and drought promoted the formation of leaf morphological diversity. Our results showed that drought stress changed the physiological and morphological characteristics of B. striata, and under light drought conditions had higher physiological activity, good morphological characteristics, higher cellular metabolic energy and ecological adaptability. Appropriate drought can promote the improvement of the quality of B. striata, and it can be widely planted in mildly arid areas.

17.
Front Chem ; 10: 921246, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685348

RESUMO

Camellia oleifera is a woody oil tree species unique to China that has been cultivated and used in China for more than 2,300 years. Most biological research on C. oleifera in recent years has focused on the development of new varieties and breeding. Novel genomic information has been generated for C. oleifera, including a high-quality reference genome at the chromosome level. Camellia seeds are used to process high-quality edible oil; they are also often used in medicine, health foods, and daily chemical products and have shown promise for the treatment and prevention of diseases. C. oleifera by-products, such as camellia seed cake, saponin, and fruit shell are widely used in the daily chemical, dyeing, papermaking, chemical fibre, textile, and pesticide industries. C. oleifera shell can also be used to prepare activated carbon electrodes, which have high electrochemical performance when used as the negative electrode of lithium-ion batteries. C. oleifera is an economically valuable plant with diverse uses, and accelerating the utilization of its by-products will greatly enhance its industrial value.

18.
Molecules ; 26(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201870

RESUMO

Flavonoids in Rosa sterilis were studied. The flavonoids in Rosa sterilis were extracted by ultrasonic method, and the extraction conditions were modeled and optimized by response the surface methodology and the artificial intelligence method. The results show that the ultrasonic method can effectively extract total flavonoids, and the extraction rate is close to the prediction value of ANN-GA algorithm, which proves the rationality of the model. The order of the effects of the parameters on the experiment was material liquid ratio > extraction power > extraction time > ethanol concentration. In addition, the scavenging effects of flavonoids on DPPH, O2-· and ·OH were also determined, and these indicated that flavonoids have strong antioxidant activities. The kinetics of the extraction process was studied by using the data of the extraction process, and it was found that the extraction process conformed to Fick's first law.


Assuntos
Inteligência Artificial , Flavonoides/análise , Flavonoides/isolamento & purificação , Sequestradores de Radicais Livres/química , Rosa/química , Ultrassom/métodos , Algoritmos , Antioxidantes/farmacologia , Compostos de Bifenilo/química , Etanol/química , Flavonoides/química , Cinética , Redes Neurais de Computação , Picratos/química , Extratos Vegetais/farmacologia , Ondas Ultrassônicas , Ultrassom/instrumentação
19.
RSC Adv ; 11(33): 20465-20478, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35479877

RESUMO

Biodiesel is one of the main biofuels used to replace fossil resources, and is mainly produced from esterification and transesterification of fatty acids and oils catalyzed by acids, bases or enzymes. Among the existing catalysts, metal oxides and their derivatives play an important role because of their high catalytic activity and low cost. ZnO is a metal oxide and its related nanomaterials are easy to prepare, which gives ZnO superior reactivity and extensive applications. Suitably modified ZnO nanomaterials typically have high specific surface areas, suitable pore sizes, and enhanced catalytic performance in the production of biodiesel. The present review introduces the application progress of ZnO catalysts in biodiesel preparation. The current shortcomings and future challenges of the basic heterogeneous catalytic systems for biodiesel production are also discussed.

20.
Molecules ; 24(18)2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31547401

RESUMO

Volatile compounds in flowers of Rhododendron delavayi, R. agastum, R. annae, and R. irroratum were analyzed using comprehensive two-dimensional gas chromatography-mass spectrometry (GC×GC) coupled with high-resolution quadrupole time-of-flight mass spectrometry (QTOFMS). A significantly increased number of compounds was separated by GC×GC compared to conventional one-dimensional GC (1DGC), allowing more comprehensive understanding of the volatile composition of Rhododendron flowers. In total, 129 volatile compounds were detected and quantified. Among them, hexanal, limonene, benzeneacetaldehyde, 2-nonen-1-ol, phenylethyl alcohol, citronellal, isopulegol, 3,5-dimethoxytoluene, and pyridine are the main compounds with different content levels in all flower samples. 1,2,3-trimethoxy-5-methyl-benzene exhibits significantly higher content in R. irroratum compared to in the other three species, while isopulegol is only found in R. irroratum and R. agastum.


Assuntos
Flores/química , Odorantes/análise , Rhododendron/química , Compostos Orgânicos Voláteis/análise , Monoterpenos Acíclicos/análise , Aldeídos/análise , Cromatografia Gasosa , Monoterpenos Cicloexânicos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Limoneno/análise , Espectrometria de Massas , Microextração em Fase Sólida , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...