Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36433146

RESUMO

Polyurethanes (PUs) are versatile and widespread, particularly as flexible and rigid foams. To avoid isocyanates and other toxic reagents required for synthesis, such as phosgene, alternative synthetic routes have been utilized to produce non-isocyanate polyurethanes (NIPUs). A thermally and flame-resistant rigid NIPU was produced from environmentally benign and bio-sourced ingredients, requiring no catalyst or solvents. A foamed structure was obtained by the addition of glutaraldehyde and four different carboxylic acids: malic acid, maleic acid, citric acid, and aconitic acid. The resulting morphology, thermal degradation, and flame resistance of each foam were compared. The properties vary with each carboxylic acid used, but in each case, peak thermal degradation and peak heat release are postponed by >100 °C compared to commercial rigid PU foam. Furthermore, in a butane torch test, NIPU foams exhibit an 80% higher remaining mass and a 75% reduction in afterburn time, compared to commercial polyurethane. This bio-based polyurethane eliminates the hazards of traditional PUs, while imparting inherent thermal stability and flame resistance uncharacteristic of conventional foams.

2.
Polymers (Basel) ; 14(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35335541

RESUMO

Polystyrene (PS) is widely used in the plastics industry, but the application range of PS is limited due to its inherently high flammability. A variety of two-dimensional (2D) nanomaterials have been reported to impart excellent flame retardancy to polymeric materials. In this study, a 2D nanomaterial MXene-organic hybrid (O-Ti3C2) was applied to PS as a nanofiller. Firstly, the MXene nanosheets were prepared by acid etching, intercalation, and delamination of bulk MAX (Ti3AlC2) material. These exfoliated MXene nanosheets were then functionalized using a cationic surfactant to improve the dispersibility in DMF. Even with a small loading of functionalized O-Ti3C2 (e.g., 2 wt%), the resulting PS nanocomposite (PS/O-Ti3C2) showed good thermal stability and lower flammability evidenced by thermogravimetric analysis (TGA) and pyrolysis-combustion flow calorimetry (PCFC). The peak heat release rate (pHRR) was significantly reduced by 32% compared to the neat PS sample. In addition, we observed that the temperature at pHRR (TpHRR) shifted to a higher temperature by 22 °C. By comparing the TGA and PCFC results between the PS/MAX and different weight ratios of PS/O-Ti3C2 nanocomposites, the thermal stability and 2D thermal- and mass-transfer barrier effect of MXene-organic hybrid nanosheets were revealed to play essential roles in delaying the polymer degradation.

3.
Polymers (Basel) ; 13(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34883616

RESUMO

Metal-organic frameworks (MOFs) are emerging as novel flame retardants for polymers, which, typically, can improve their thermal stability and flame retardancy. However, there is a lack of specific studies on the thermal decomposition kinetics of MOF-based polymer composites, although it is known that they are important for the modeling of flaming ignition, burning, and flame spread over them. The thermal decomposition mechanisms of poly (methyl methacrylate) (PMMA) have been well investigated, which makes PMMA an ideal polymer to evaluate how fillers affect its decomposition process and kinetics. Thus, in this study, UiO-66, a common type of MOF, was embedded into PMMA to form a composite. Based on the results from the microscale combustion calorimeter, the values of the apparent activation energy of PMMA/UiO-66 composites were calculated and compared against those of neat PMMA. Furthermore, under cone calorimeter tests, UiO-66, at only 1.5 wt%, can reduce the maximum burning intensity and average mass loss rate of PMMA by 14.3% and 12.4%, respectively. By combining UiO-66 and SiO2 to form a composite, it can contribute to forming a more compact protective layer, which shows a synergistic effect on reducing the maximum burning intensity and average mass loss rate of PMMA by 22.0% and 14.7%, respectively.

4.
ACS Omega ; 6(12): 8016-8020, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33817460

RESUMO

Polyurethane foam (PUF) is a highly flammable material typically used for cushioning in furniture and automobiles. A polyelectrolyte complex coating containing polyethylenimine, ammonium polyphosphate, and halloysite clay was applied to PUF using a two-step deposition process in an attempt to reduce its flammability. Electron microscopy confirms that this conformal thin film preserves the porous morphology of the foam and adds 20% to the foam's weight. Directly exposing coated foam to a butane torch flame yields a 73% residue after burning while keeping the internal structure of the foam intact. Cone calorimetry reveals a 52.5% reduction in the peak heat release rate (pkHRR) of the clay-based coating compared to that of the uncoated foam. This significant reduction in pkHRR and preservation of the porous structure of the foam highlights the utility of this easy-to-deposit, environmentally benign treatment to reduce the foam's flammability.

5.
Zhongguo Dang Dai Er Ke Za Zhi ; 22(12): 1331-1337, 2020 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-33328006

RESUMO

OBJECTIVE: To study the expression and significance of ubiquitin-specific protease 7 (USP7) and the key factors of the Wnt signaling pathway in the lung tissue of preterm rats after hyperoxia exposure. METHODS: A total of 180 preterm neonatal Wistar rats were randomly divided into an air control group, an air intervention group, a hyperoxia control group, and a hyperoxia intervention group, with 45 rats in each group. Lung injury was induced by hyperoxia exposure in the hyperoxia groups. The preterm rats in the intervention groups were given intraperitoneal injection of the USP7 specific inhibitor P5091 (5 mg/kg) every day. The animals were sacrificed on days 3, 5, and 9 of the experiment to collect lung tissue specimens. Hematoxylin-eosin staining was used to observe the pathological changes of lung tissue. RT-PCR and Western blot were used to measure the mRNA and protein expression levels of USP7 and the key factors of the Wnt signaling pathway ß-catenin and α-smooth muscle actin (α-SMA) in lung tissue. RESULTS: The air groups had normal morphology and structure of lung tissue; on days 3 and 5, the hyperoxia control group showed obvious alveolar compression and disordered structure, with obvious inflammatory cells, erythrocyte diapedesis, and interstitial edema. On day 9, the hyperoxia control group showed alveolar structural disorder and obvious thickening of the alveolar septa. Compared with the hyperoxia control group at the corresponding time points, the hyperoxia intervention group had significantly alleviated disordered structure, inflammatory cell infiltration, and bleeding in lung tissue. At each time point, the hyperoxia groups had a significantly lower radial alveolar count (RAC) than the corresponding air groups (P < 0.05), and the hyperoxia intervention group had a significantly higher RAC than the hyperoxia control group (P < 0.05). On days 3, 5, and 9 of the experiment, the hyperoxia groups had significantly higher mRNA expression of USP7 and ß-catenin and protein expression of USP7, ß-catenin, and α-SMA than the corresponding air groups (P < 0.05). Compared with the hyperoxia control group, the hyperoxia intervention group had significant reductions in the mRNA expression of ß-catenin and the protein expression of ß-catenin and α-SMA (P < 0.05), while there were no significant differences in the mRNA and protein expression of USP7 between the hyperoxia intervention and hyperoxia control groups (P > 0.05). There were no significant differences in the mRNA expression of USP7 and ß-catenin and the protein expression of USP7, ß-catenin, and α-SMA between the air intervention and air control groups (P > 0.05). CONCLUSIONS: Hyperoxia exposure can activate the Wnt/ß-catenin signaling pathway, and USP7 may participate in hyperoxic lung injury through the Wnt/ß-catenin signaling pathway. The USP7 specific inhibitor P5091 may accelerate the degradation of ß-catenin by enhancing its ubiquitination, reduce lung epithelial-mesenchymal transition, and thus exert a certain protective effect against hyperoxic lung injury.


Assuntos
Hiperóxia/fisiopatologia , Pulmão/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Animais , Animais Recém-Nascidos , Pulmão/fisiopatologia , Distribuição Aleatória , Ratos , Ratos Wistar , Tiofenos/farmacologia , Proteases Específicas de Ubiquitina , Via de Sinalização Wnt
6.
ACS Appl Mater Interfaces ; 12(43): 49130-49137, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33064444

RESUMO

Most current flame-retardant nanocoatings for flexible polyurethane foam (PUF) consist of passive barriers, such as clay, graphene oxide, or metal hydroxide. In an effort to develop a polymeric and environmentally benign nanocoating for PUF, positively charged chitosan (CH) and anionic sodium hexametaphosphate (PSP) were deposited using layer-by-layer (LbL) assembly. Only six bilayers of CH/PSP film can withstand flame penetration during exposure to a butane torch (∼1400 °C) for 10 s and stop flame spread on the foam. Additionally, cone calorimetry reveals that the fire growth rate, peak heat release rate, and maximum average rate of heat emission are reduced by 55, 43, and 38%, respectively, compared with uncoated foam. This multilayer thin film quickly dehydrates to form an intumescent charred exoskeleton on the surface of the open-celled structure of polyurethane, inhibiting heat transfer and completely eliminating melt dripping. This entirely polymeric nanocoating provides a safe and effective alternative for reducing the fire hazard of polyurethane foam that is widely used for cushioning and insulation.

7.
FEMS Microbiol Lett ; 362(11)2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25953857

RESUMO

Bacillus amyloliquefaciens NK-1 has the potential to produce levan and poly-gamma-glutamic acid (γ-PGA) simultaneously. However, it is not possible to purify each single product from the same strain because the extraction process is identical. We deleted the pgs cluster (for γ-PGA synthesis) from the NK-1 strain and constructed a γ-PGA-deficient NK-ΔLP strain. Nuclear magnetic results showed that the NK-ΔLP strain could produce high purity levan product. However, its levan titer was only 1.96 g L(-1) in the basal medium. Single-factor experimental and response surface methodology was used to optimize the culture condition, leading to levan titer of 13.9 and 22.6 g L(-1) in flask culture and in a 5-L bioreactor, respectively. The levan purity can reach to 92.7% after 48 h cultivation. Furthermore, the relationship between levanase (LevB) and levan molecular weight was studied. The results showed that LevB resulted in the production of low molecular weight levan and its expression level determined the ratio of high and low molecular weight levan. We also deleted the sac cluster (for levan synthesis) from the NK-1 strain and constructed a levan-deficient NK-L strain. The NK-L strain exhibited increased purity of γ-PGA product from 79.5 to 91.2%.


Assuntos
Bacillus/genética , Bacillus/metabolismo , Frutanos/biossíntese , Reatores Biológicos , Meios de Cultura , Frutanos/isolamento & purificação , Técnicas de Inativação de Genes , Glicosídeo Hidrolases/genética , Peso Molecular , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/biossíntese , Ácido Poliglutâmico/isolamento & purificação
8.
Zhongguo Dang Dai Er Ke Za Zhi ; 13(7): 577-80, 2011 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-21752327

RESUMO

OBJECTIVE: To study the expression and the role of heme oxygenase-1 (HO-1) and inducible nitric oxide synthase (iNOS) in preterm rats with hyperoxia-induced lung injuries. METHODS: Sixty-four three-day-old preterm Sprague-Dawley rats were randomly assigned to a hyperoxia group (90% oxygen exposure) and a control group (room air exposure), with 32 rats in each group. After 3 days or 7 days of exposure, the lung activity of HO-1 and nitric oxide (NO) contents in bronchoalveolar lavage fluid (BALF), pulmonary histopathologic changes, and the cellular distribution and expression of HO-1 and iNOS in the lungs were measured. RESULTS: After 3 days and 7 days of exposure, the hyperoxia group showed acute lung injuries characterized by the presence of hyperaemia, red cell extravasation and inflammatory infiltration. The NO contents in BALF and the iNOS expression in the lungs increased significantly in the hyperoxia group compared with those in the control group 3 and 7 days after exposure. The expression of HO-1 in macrophages in the lungs increased significantly in the hyperoxia group compared with that in the control group 3 and 7 days after exposure. The NO contents in BALF and the iNOS and HO-1 expression in the lungs increased significantly 7 days after hyperoxia exposure compared with 3 days after hyperoxia exposure. CONCLUSIONS: iNOS and HO-1 levels in the lungs increase in preterm rats with hyperoxia-induced lung injuries, suggesting that iNOS and HO-1 may play roles in hyperoxia-induced pulmonary injuries.


Assuntos
Heme Oxigenase (Desciclizante)/análise , Hiperóxia/enzimologia , Lesão Pulmonar/etiologia , Pulmão/enzimologia , Óxido Nítrico Sintase Tipo II/análise , Animais , Líquido da Lavagem Broncoalveolar/química , Feminino , Heme Oxigenase (Desciclizante)/fisiologia , Hiperóxia/complicações , Masculino , Óxido Nítrico Sintase Tipo II/fisiologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...