Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Stem Cells ; 14(6): 393-419, 2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35949394

RESUMO

Over the past few decades, high-throughput screening (HTS) has made great contributions to new drug discovery. HTS technology is equipped with higher throughput, minimized platforms, more automated and computerized operating systems, more efficient and sensitive detection devices, and rapid data processing systems. At the same time, in vitro neurogenesis is gradually becoming important in establishing models to investigate the mechanisms of neural disease or deve lopmental processes. However, challenges remain in generating more mature and functional neurons with specific subtypes and in establishing robust and standardized three-dimensional (3D) in vitro models with neural cells cultured in 3D matrices or organoids representing specific brain regions. Here, we review the applications of HTS technologies on in vitro neurogenesis, especially aiming at identifying the essential genes, chemical small molecules and adaptive microenvironments that hold great prospects for generating functional neurons or more reproductive and homogeneous 3D organoids. We also discuss the developmental tendency of HTS technology, e.g., so-called next-generation screening, which utilizes 3D organoid-based screening combined with microfluidic devices to narrow the gap between in vitro models and in vivo situations both physiologically and pathologically.

2.
Neural Regen Res ; 17(1): 152-162, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34100451

RESUMO

The mechanisms of the transplantation of neural stem cells (NSCs) in the treatment of Alzheimer's disease remain poorly understood. In this study, NSCs were transplanted into the hippocampal CA1 region of the rTg (tau P301L) 4510 mouse model, a tauopathy model that is thought to reflect the tau pathology associated with Alzheimer's disease. The results revealed that NSC transplantation reduced the abnormal aggregation of tau, resulting in significant improvements in the short-term memory of the tauopathy model mice. Compared with wild-type and phosphate-buffered saline (PBS)-treated mice, mice that received NSC transplantations were characterized by changes in the expression of multiple proteins in brain tissue, particularly those related to the regulation of tau aggregation or misfolding. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Gene Ontology (GO) function analysis revealed that these proteins were primarily enriched in pathways associated with long-term potentiation, neurogenesis, and other neurobiological processes. Changes in the expression levels of key proteins were verified by western blot assays. These data provided clues to improve the understanding of the functional capacity associated with NSC transplantation in Alzheimer's disease treatment. This study was approved by the Beijing Animal Ethics Association and Ethics Committee of Beijing Institute of Technology (approval No. SYXK-BIT-school of life science-2017-M03) in 2017.

3.
Yi Chuan ; 43(1): 16-29, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33509771

RESUMO

The intracellular membrane trafficking is a complicated pathway network. Rab GTPases are key regulators of membrane trafficking that are generally considered as specific markers and indicators of various organelles and membrane trafficking in endocytic and secretory pathways. Dysfunction in axonal and endosomal transport related to Rab proteins is one of the most important causes of neurodegenerative diseases. In this review, we mainly introduce how the Rab proteins change in different neurodegenerative diseases and their regulatory roles in the pathological mechanisms of related diseases. We also discuss the relationships between mitochondrial and glial cell dysfunctions and Rab proteins. Further exploration of the regulatory roles of Rab proteins will shed lights on revealing the pathogenic mechanisms of neurological diseases and providing potential targets for the early diagnosis and treatment of neurological diseases.


Assuntos
Doenças Neurodegenerativas , Proteínas rab de Ligação ao GTP , Humanos , Mitocôndrias , Doenças Neurodegenerativas/genética , Neuroglia , Transporte Proteico , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...