Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Transl Res ; 15(5): 3674-3685, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37303685

RESUMO

OBJECTIVE: This study aimed to comprehensively evaluate perianal fistulas and their related complications using magnetic resonance imaging (MRI). METHODS: We enrolled 115 eligible patients who underwent preoperative perianal MRI. Primary fistulas, internal and external openings, and related complications were evaluated using MRI. All fistulas were classified according to Park's classification, Standard Practice Task Force classification, St. James's grade, and the position of the internal opening. RESULTS: In total, 169 primary fistulas were detected in 115 patients; 73 (63.5%) patients had a single primary tract and 42 (36.5%) patients had multiple primary tracts, and 198 internal and 129 external openings were identified. Based on Park's classification, 150 (88.7%) primary fistulas were classified into the following types: intersphincteric (82, 54.7%), trans-sphincteric (58, 38.6%), suprasphincteric (8, 5.3%), extrasphincteric (1, 0.7%), and diffuse intersphincteric with trans-sphincteric (1, 0.7%) types. Based on St. James's grade, 149 fistulas were classified into grade 1 (52, 34.9%), grade 2 (30, 20.1%), grade 3 (20, 13.4%), grade 4 (38, 25.5%), and grade 5 (9, 6.1%). We detected 92 (54.4%) simple and 77 (45.6%) complex perianal fistulas and 72 (42.6%) high and 97 (57.4%) low perianal fistulas. Furthermore, we detected 32 secondary tracts in 23 (20.0%) patients and 87 abscesses in 60 (52.2%) patients. Levator ani muscle involvement and extensive soft tissue edema were detected in 12 (10.4%) and 24 (20.9%) patients, respectively. CONCLUSION: MRI is a valuable and comprehensive tool that can not only be used to determine the general condition of perianal fistulas but also to classify them and identify related complications.

2.
Nanoscale Res Lett ; 13(1): 24, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29344742

RESUMO

Recent theoretical studies indicated that the Curie temperature of perovskite manganite thin films can be increased by more than an order of magnitude by applying appropriate interfacial strain to control orbital ordering. In this work, we demonstrate that the regular intercalation of BaTiO3 layers between La0.67Sr0.33MnO3 layers effectively enhances ferromagnetic order and increases the Curie temperature of La0.67Sr0.33MnO3/BaTiO3 superlattices. The preferential orbital occupancy of eg(x 2 -y 2 ) in La0.67Sr0.33MnO3 layers induced by the tensile strain of BaTiO3 layers is identified by X-ray linear dichroism measurements. Our results reveal that controlling orbital ordering can effectively improve the Curie temperature of La0.67Sr0.33MnO3 films and that in-plane orbital occupancy is beneficial to the double exchange ferromagnetic coupling of thin-film samples. These findings create new opportunities for the design and control of magnetism in artificial structures and pave the way to a variety of novel magnetoelectronic applications that operate far above room temperature.

3.
Nanoscale Res Lett ; 12(1): 330, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28476085

RESUMO

We study the magnetic properties of an epitaxial growth bilayer composed of ferromagnetic La0.7Sr0.3MnO3 (LSMO) and paramagnetic LaNiO3 (LNO) on SrTiO3 (STO) substrates. We find that the stack order of the bilayer heterostructure plays a key role in the interfacial coupling strength, and the coupling at the LSMO(top)/LNO(bottom) interface is much stronger than that at the LNO(top)/LSMO(bottom). Moreover, a strong spin glass state has been observed at the LSMO/LNO interface, which is further confirmed by two facts: first, that the dependence of the irreversible temperature on the cooling magnetic field follows the Almeida-Thouless line and, second, that the relaxation of the thermal remnant magnetization can be fitted by a stretched exponential function. Interestingly, we also find an exchange bias effect at the LSMO/LNO bilayer below the spin glass freezing temperature, indicating that the exchange bias is strongly correlated with the spin glass state at its interface.

4.
Nanoscale Res Lett ; 10(1): 2419, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26055471

RESUMO

Arrays of epitaxial Fe3O4 nanodots were prepared using laser molecular beam epitaxy (LMBE), with the aid of ultrathin porous anodized aluminum templates. An Fe3O4 film was also prepared using LMBE. Atomic force microscopy and scanning electron microscopy images showed that the Fe3O4 nanodots existed over large areas of well-ordered hexagonal arrays with dot diameters (D) of 40, 70, and 140 nm; height of approximately 20 nm; and inter-dot distances (D int) of 67, 110, and 160 nm. The calculated nanodot density was as high as 0.18 Tb in.(-2) when D = 40 nm. X-ray diffraction patterns indicated that the as-grown Fe3O4 nanodots and the film had good textures of (004) orientation. Both the film and the nanodot arrays exhibited magnetic anisotropy; the anisotropy of the nanoarray weakened with decreasing dot size. The Verwey transition temperature of the film and nanodot arrays with D ≥ 70 nm was observed at around 120 K, similar to that of the Fe3O4 bulk; however, no clear transition was observed from the small nanodot array with D = 40 nm. Results showed that magnetic properties could be tailored through the morphology of nanodots. Therefore, Fe3O4 nanodot arrays may be applied in high-density magnetic storage and spintronic devices.

5.
Nanoscale Res Lett ; 9(1): 6, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24393445

RESUMO

We report the dependence of magnetoresistance effect on resistivity (ρ) in Co/ZnO films deposited by magnetron sputtering at different sputtering pressures with different ZnO contents. The magnitude of the resistivity reflects different carrier transport regimes ranging from metallic to hopping behaviors. Large room-temperature magnetoresistance greater than 8% is obtained in the resistivity range from 0.08 to 0.5 Ω · cm. The magnetoresistance value decreases markedly when the resistivity of the films is less than 0.08 Ω · cm or greater than 0.5 Ω · cm. When 0.08 Ω · cm < ρ < 0.5 Ω · cm, the conduction contains two channels: the spin-dependent tunneling channel and the spin-independent second-order hopping (N = 2). The former gives rise to a high room-temperature magnetoresistance effect. When ρ > 0.5 Ω · cm, the spin-independent higher-order hopping (N > 2) comes into play and decreases the tunneling magnetoresistance value. For the samples with ρ < 0.08 Ω · cm, reduced magnetoresistance is mainly ascribed to the formation of percolation paths through interconnected elongated metallic Co particles. This observation is significant for the improvement of room-temperature magnetoresistance value for future spintronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...