Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(10)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451729

RESUMO

Development of effective strategies to manage the inevitable acquired resistance to osimertinib, a third-generation EGFR inhibitor for the treatment of EGFR-mutant (EGFRm) non-small cell lung cancer (NSCLC), is urgently needed. This study reports that DNA topoisomerase II (Topo II) inhibitors, doxorubicin and etoposide, synergistically decreased cell survival, with enhanced induction of DNA damage and apoptosis in osimertinib-resistant cells; suppressed the growth of osimertinib-resistant tumors; and delayed the emergence of osimertinib-acquired resistance. Mechanistically, osimertinib decreased Topo IIα levels in EGFRm NSCLC cells by facilitating FBXW7-mediated proteasomal degradation, resulting in induction of DNA damage; these effects were lost in osimertinib-resistant cell lines that possess elevated levels of Topo IIα. Increased Topo IIα levels were also detected in the majority of tissue samples from patients with NSCLC after relapse from EGFR tyrosine kinase inhibitor treatment. Enforced expression of an ectopic TOP2A gene in sensitive EGFRm NSCLC cells conferred resistance to osimertinib, whereas knockdown of TOP2A in osimertinib-resistant cell lines restored their susceptibility to osimertinib-induced DNA damage and apoptosis. Together, these results reveal an essential role of Topo IIα inhibition in mediating the therapeutic efficacy of osimertinib against EGFRm NSCLC, providing scientific rationale for targeting Topo II to manage acquired resistance to osimertinib.


Assuntos
Acrilamidas , Compostos de Anilina , Carcinoma Pulmonar de Células não Pequenas , DNA Topoisomerases Tipo II , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Neoplasias Pulmonares , Inibidores da Topoisomerase II , Humanos , Acrilamidas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Compostos de Anilina/farmacologia , Receptores ErbB/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Linhagem Celular Tumoral , Inibidores da Topoisomerase II/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Camundongos , Mutação , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Sinergismo Farmacológico , Dano ao DNA , Piperazinas/farmacologia , Etoposídeo/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Clin Pathol ; 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758305

RESUMO

AIMS: Epidermal growth factor receptor (EGFR) belongs to the receptor tyrosine kinases family and overexpression of EGFR has been linked to poor prognosis and cancer progression. Somatostatin receptor 2 (SSTR2) is a G-protein-coupled receptor (GPCR) with diverse biological functions in humans, and it is upregulated through the NF-KB signalling pathway in nasopharyngeal carcinomas (NPC). However, no studies have examined the EGFR and SSTR2 in NPC. This study aimed to investigate whether SSTR2 is associated with EGFR and clinicopathological features in NPC. METHODS: Bioinformatics analysis was performed to assess the correlation between EGFR and SSTR2 based on the GEO database. The expression of SSTR2 and EGFR was evaluated by immunohistochemistry (IHC) in 491 cases of NPC and 50 cases of non-cancerous nasopharyngeal epithelium. RESULTS: The bioinformatics analysis and IHC showed a positive correlation between SSTR2 and EGFR in NPC. High expression of SSTR2 and EGFR was significantly increased in NPC patients compared with non-cancerous nasopharyngeal epithelium. High expression of SSTR2 and/or EGFR was associated with a worse outcome and a higher risk of progression. The study found that patients receiving chemoradiotherapy (CR) with high expression of SSTR2, high expression of EGFR, and high coexpression of SSTR2 and EGFR had a poorer prognosis in both progression-free survival (PFS) and overall survival (OS). Interestingly, NPC patients with high expression of SSTR2, high expression of EGFR, high coexpression of EGFR and SSTR2, and EGFR/SSTR2 anyone high expression had a better prognosis with CR combined with targeted therapy. Cox multivariate analysis identified SSTR2 and EGFR as independent poor predictors of PFS. CONCLUSION: Our study is the first to shed light on the intricate relationship between SSTR2 and EGFR in NPC and provides new insights into the potential benefits of EGFR targeted therapy for patients with high SSTR2 expression. Additionally, SSTR2 has potential as a new biomarker for poor prognosis in NPC patients.

3.
J Cancer ; 13(13): 3434-3443, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313041

RESUMO

The discovery of immune checkpoints has been well known to provide novel clues for cancer treatments. Immunotherapy against the programmed cell death protein-1 (PD-1) /programmed death-ligand-1 (PD-L1), one of the most popular auxiliary treatments in recent years, has been applied in various tumor treatments, including non-small cell lung cancer (NSCLC). However, inevitable issues such as side effects and drug resistance emerge following the use of immune checkpoint inhibitors. The PI3K/AKT/mTOR pathway may participate in the regulation of PD-L1 expression. Abnormal PI3K/AKT/mTOR pathway activation results in increased PD-L1 protein translation, whereas PD-L1 overexpression can activate the PI3K/AKT/mTOR pathway inversely. Via downstream proteins, including 4E-BP1, STAT3, NF-κB, c-MYC, and AMPK in aberrant energy status, the PI3K/AKT/mTOR pathway can regulate PD-L1 post-transcription and translation. Besides, the regulation of the PI3K pathway by the PD-1/PD-L1 axis involves both tumor cells and the tumor immune microenvironment. Inhibitors targeting the PD-1/PD-L1 have been successfully applied in the treatment of gastrointestinal cancer and breast cancer. Meanwhile, drug resistance from alternative pathway activation also evidently affects clinical progress. To achieve a better therapeutic effect and quality of survival, the combination of multiple treatment modalities presents great research value. Here we reviewed the interaction between PD-1/PD-L1 and PI3K/AKT/mTOR pathway in the progression and treatment of NSCLC and summarized its clinical implications. The intracellular interactions between PD-1/PD-L1 and the PI3K/AKT/mTOR pathway indicate that PD-1/PD-L1 inhibitors have a wide range of potential applications. And we presented the mechanism for combining therapy with monoclonal antibody PD-1/PD-L1 and PI3K/AKT/mTOR inhibitors in this review, to broaden the therapies for NSCLC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...