Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 606
Filtrar
1.
Neural Regen Res ; 20(1): 6-20, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38767472

RESUMO

The endoplasmic reticulum, a key cellular organelle, regulates a wide variety of cellular activities. Endoplasmic reticulum autophagy, one of the quality control systems of the endoplasmic reticulum, plays a pivotal role in maintaining endoplasmic reticulum homeostasis by controlling endoplasmic reticulum turnover, remodeling, and proteostasis. In this review, we briefly describe the endoplasmic reticulum quality control system, and subsequently focus on the role of endoplasmic reticulum autophagy, emphasizing the spatial and temporal mechanisms underlying the regulation of endoplasmic reticulum autophagy according to cellular requirements. We also summarize the evidence relating to how defective or abnormal endoplasmic reticulum autophagy contributes to the pathogenesis of neurodegenerative diseases. In summary, this review highlights the mechanisms associated with the regulation of endoplasmic reticulum autophagy and how they influence the pathophysiology of degenerative nerve disorders. This review would help researchers to understand the roles and regulatory mechanisms of endoplasmic reticulum-phagy in neurodegenerative disorders.

2.
Radiother Oncol ; : 110525, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39245067

RESUMO

BACKGROUND AND PURPOSE: Fast and automated generation of treatment plans is desirable for magnetic resonance imaging (MRI)-guided adaptive radiotherapy (MRIgART). This study proposed a novel patient-specific auto-planning method and validated its feasibility in improving the existing online planning workflow. MATERIALS AND METHODS: Data from 40 patients with prostate cancer were collected retrospectively. A patient-specific auto-planning method was proposed to generate adaptive treatment plans. First, a population dose-prediction model (M0) was trained using data from previous patients. Second, a patient-specific model (Mps) was created for each new patient by fine-tuning M0 with the patient's data. Finally, an auto plan was optimized using the parameters derived from the predicted dose distribution by Mps. The auto plans were compared with manual plans in terms of plan quality, efficiency, dosimetric verification, and clinical evaluation. RESULTS: The auto plans improved target coverage, reduced irradiation to the rectum, and provided comparable protection to other organs-at-risk. Target coverage for the planning target volume (+0.61 %, P = 0.023) and clinical target volume 4000 (+1.60 %, P < 0.001) increased. V2900cGy (-1.06 %, P = 0.004) and V1810cGy (-2.49 %, P < 0.001) to the rectal wall and V1810cGy (-2.82 %, P = 0.012) to the rectum were significantly reduced. The auto plans required less planning time (-3.92 min, P = 0.001), monitor units (-46.48, P = 0.003), and delivery time (-0.26 min, P = 0.004), and their gamma pass rates (3 %/2 mm) were higher (+0.47 %, P = 0.014). CONCLUSION: The proposed patient-specific auto-planning method demonstrated a robust level of automation and was able to generate high-quality treatment plans in less time for MRIgART in prostate cancer.

3.
Adv Mater ; : e2407741, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39091050

RESUMO

The metal-catalyzed sulfur reaction in lithium-sulfur (Li-S) batteries usually suffers from the strong binding of sulfur species to the catalyst surface, which destroys the electric double layer (EDL) region there. This causes rapid catalyst deactivation because it prevents the desorption of sulfur species and mass transport through the EDL is hindered. This work introduces a competitive adsorption factor (fsulfur) as a new indicator to quantify the competitive adsorption of sulfur species in the EDL and proposes an alloying method to change it by strengthening the p-d hybridization of alloying metals with electrolyte solvents. A cobalt-zinc alloy catalyst with a moderate fsulfur lowers the activation energy of the rate-limiting step of the conversion of lithium polysulfides to lithium sulfide, giving a platform capacity proportion that is 96% of the theoretical value and has a greatly improved anti-passivation ability, especially at high sulfur loadings and lean electrolyte conditions (a low E/S ratio of 5 µL mgS -1). A pouch cell using this approach has a high energy density of up to 464 Wh kg-1. Such a competitive adsorption indicator and alloying strategy offer a new guideline for catalyst design and a practical electrocatalysis solution for Li-S batteries.

4.
Mol Neurobiol ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164481

RESUMO

Contactin-associated protein1 (Caspr1) plays an important role in the formation and stability of myelinated axons. In Caspr1 mutant mice, autophagy-related structures accumulate in neurons, causing axonal degeneration; however, the mechanism by which Caspr1 regulates autophagy remains unknown. To illustrate the mechanism of Caspr1 in autophagy process, we demonstrated that Caspr1 knockout in primary neurons from mice along with human cell lines, HEK-293 and HeLa, induced autophagy by downregulating the PI3K/AKT/mTOR signaling pathway to promote the conversion of microtubule-associated protein light chain 3 I (LC3-I) to LC3-II. In contrast, Caspr1 overexpression in cells contributed to the upregulation of this signaling pathway. We also demonstrated that Caspr1 knockout led to increased LC3-I protein expression in mice. In addition, Caspr1 could inhibit the expression of autophagy-related 4B cysteine peptidase (ATG4B) protein by directly binding to ATG4B in overexpressed Caspr1 cells. Intriguingly, we found an accumulation of ATG4B in the Golgi apparatuses of cells overexpressing Caspr1; therefore, we speculate that Caspr1 may restrict ATG4 secretion from the Golgi apparatus to the cytoplasm. Collectively, our results indicate that Caspr1 may regulate autophagy by modulating the PI3K/AKT/mTOR signaling pathway and the levels of ATG4 protein, both in vitro and in vivo. Thus, Caspr1 can be a potential therapeutic target in axonal damage and demyelinating diseases.

5.
Acc Chem Res ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39190869

RESUMO

ConspectusTwo-dimensional (2D) materials such as graphene and MXenes offer appealing opportunities in electrochemical energy storage due to their large surface area, tunable surface chemistry, and unique electronic properties. One of the primary challenges in utilizing these materials for practical electrodes, especially those with industrial-level thickness, is developing a highly interconnected and porous conductive network. This network is crucial for supporting continuous electron transport, rapid ion diffusion, and effective participation of all active materials in electrochemical reactions. Moreover, the demand for efficient energy storage in advanced electronic devices and electric vehicles has led to the need for not only thicker but also denser electrodes to achieve compact energy storage. Traditional densification methods often compromise between volumetric capacitance and ion-accessible surface area, which can diminish rate performance. As versatile building blocks, 2D materials can overcome these limitations through the assembly into complex superstructures such as 1D fibers, 2D thin films, and 3D porous networks, a capability less attainable by other nanomaterials.This Account explores the pathways from exfoliated 2D nanosheets to densely packed, yet porous assemblies tailored for compact energy storage. Focusing on graphene and MXenes, we delve into the intricate relationships between surface structure, assembly behaviors, and electrochemical performance. We emphasize the crucial role of surface chemistry and interfacial interactions in forming stable colloidal dispersions and subsequent macroscopic structures. Furthermore, we highlight how solvents, acting as spacers, are instrumental in microstructure formation and how capillary force-driven densification is essential for creating compact assemblies. With precise control over shrinkage, the customized dense assemblies can strike a balance between high packing density and sufficient porosity, ensuring efficient ion transport, mechanical stability, and high volumetric performance across various electrochemical energy storage technologies.Furthermore, we highlight the importance of understanding and manipulating the surface chemistry of 2D materials at the atomic level to optimize their assembly and enhance electrochemical behaviors. Advanced in situ characterizations with high temporal and spatial resolution are necessary to gain deeper insights into the complex assembly process. Moreover, the integration of machine learning and computational chemistry emerges as a promising method to predict and design new materials and assembly strategies, potentially accelerating the development of next-generation energy storage systems. Our insights into the assembly and densification of 2D materials provide a comprehensive foundation for future research and practical applications in compact, high-performance energy storage devices. This exploration sets the stage for a transformative approach to overcoming the challenges of current energy storage technologies, promising significant advancements in 2D materials in the field.

6.
Phys Med Biol ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39214129

RESUMO

Objective: The beam switching time and fractional dose influence the FLASH effect. A single-beam-per-fraction (SBPF) scheme using uniform fractional dose (UFD) has been proposed for FLASH-RT to eliminate the beam switching time. Based on SBPF schemes, a fractionation dose optimization algorithm is proposed to optimize nonuniform fractional doses (non-UFD) plans to maximize the fractionation effect and dose-dependent FLASH effect. Approach: The UFD plan, containing five 236-MeV transmission proton beams, was optimized for 11 patients with peripheral lung cancer, with each beam delivering a uniform dose of 11 Gy to the target. Meanwhile, the non-UFD plan was optimized using fractionation dose optimization. To compare the two plans, the equivalent dose to 2 Gy (EQD2) for the target and normal tissues was calculated with an α/ß ratio of 10 and 3, respectively. Both UFD and non-UFD plans ensured that the target received an EQD2 of 96.3 Gy. To investigate the overall improvement in normal tissue sparing with the non-UFD plan, the FLASH-enhanced EQD2 was calculated. Main results: The fractional doses in non-UFD plans ranged between 5.0 Gy and 24.2 Gy. No significant differences were found in EQD22%and EQD298%of targets between UFD and non-UFD plans. However, the D95%of the target in non-UFD plans was significantly reduced by 15.1%. The sparing effect in non-UFD plans was significantly improved. The FLASH-enhanced EQD2meanin normal tissue and ipsilateral lung was significantly reduced by 3.5% and 10.4%, respectively, in non-UFD plans. The overall improvement is attributed to both the FLASH and fractionation effects. Significance: The fractionation dose optimization can address the limitation of multiple-beam FLASH-RT and utilize the relationship between fractional dose and FLASH effect. Consequently, the non-UFD scheme results in further improvements in normal tissue sparing compared to the UFD scheme, attributed to enhanced fractionation and FLASH effects.

7.
Cell Death Dis ; 15(8): 591, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39143050

RESUMO

Neurons rely heavily on high mitochondrial metabolism to provide sufficient energy for proper development. However, it remains unclear how neurons maintain high oxidative phosphorylation (OXPHOS) during development. Mitophagy plays a pivotal role in maintaining mitochondrial quality and quantity. We herein describe that G protein-coupled receptor 50 (GPR50) is a novel mitophagy receptor, which harbors the LC3-interacting region (LIR) and is required in mitophagy under stress conditions. Although it does not localize in mitochondria under normal culturing conditions, GPR50 is recruited to the depolarized mitochondrial membrane upon mitophagy stress, which marks the mitochondrial portion and recruits the assembling autophagosomes, eventually facilitating the mitochondrial fragments to be engulfed by the autophagosomes. Mutations Δ502-505 and T532A attenuate GPR50-mediated mitophagy by disrupting the binding of GPR50 to LC3 and the mitochondrial recruitment of GPR50. Deficiency of GPR50 causes the accumulation of damaged mitochondria and disrupts OXPHOS, resulting in insufficient ATP production and excessive ROS generation, eventually impairing neuronal development. GPR50-deficient mice exhibit impaired social recognition, which is rescued by prenatal treatment with mitoQ, a mitochondrially antioxidant. The present study identifies GPR50 as a novel mitophagy receptor that is required to maintain mitochondrial OXPHOS in developing neurons.


Assuntos
Mitocôndrias , Mitofagia , Neurônios , Receptores Acoplados a Proteínas G , Animais , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Neurônios/metabolismo , Mitocôndrias/metabolismo , Camundongos , Humanos , Fosforilação Oxidativa , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Espécies Reativas de Oxigênio/metabolismo , Camundongos Knockout , Neurogênese
8.
Natl Sci Rev ; 11(8): nwae207, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39007002

RESUMO

Thickening of electrodes is crucial for maximizing the proportion of active components and thus improving the energy density of practical energy storage cells. Nevertheless, trade-offs between electrode thickness and electrochemical performance persist because of the considerably increased ion transport resistance of thick electrodes. Herein, we propose accelerating ion transport through thick and dense electrodes by establishing an immobile polyanionic backbone within the electrode pores; and as a proof of concept, gel polyacrylic electrolytes as such a backbone are in situ synthesized for supercapacitors. During charge and discharge, protons rapidly hop among RCOO- sites for oriented transport, fundamentally reducing the effects of electrode tortuosity and polarization resulting from concentration gradients. Consequently, nearly constant ion transport resistance per unit thickness is achieved, even in the case of a 900-µm-thick dense electrode, leading to unprecedented areal capacitances of 14.85 F cm-2 at 1 mA cm-2 and 4.26 F cm-2 at 100 mA cm-2. This study provides an efficient method for accelerating ion transport through thick and dense electrodes, indicating a significant solution for achieving high energy density in energy storage devices, including but not limited to supercapacitors.

9.
Med Phys ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031641

RESUMO

BACKGROUNDS: When comparing the delivery of all beams per fraction (ABPF) to single beam per fraction (SBPF), it is observed that SBPF not only helps meet the FLASH dose threshold but also mitigates the uncertainty with beam switching in the FLASH effect. However, SBPF might lead to a higher biological equivalent dose in 2 Gy (EQD2) for normal tissues. PURPOSE: This study aims to develop an EQD2-based integrated optimization framework (EQD2-IOF), encompassing robust dose, delivery efficiency, and beam orientation optimization (BOO) for Bragg peak FLASH plans using the SBPF treatment schedule. The EQD2-IOF aims to enhance both dose sparing and the FLASH effect. METHODS: A superconducting gantry was employed for fast energy switching within 27 ms, while universal range shifters were utilized to improve beam current in the implementation of FLASH plans with five Bragg peak beams. To enhance dose delivery efficiency while maintaining plan quality, a simultaneous dose and spot map optimization (SDSMO) algorithm for single field optimization was incorporated into a Bayesian optimization-based auto-planning algorithm. Subsequently, a BOO algorithm based on Tabu search was developed to select beam angle combinations (BACs) for 10 lung cases. To simultaneously consider dose sparing and FLASH effect, a quantitative model based on dose-dependent dose modification factor (DMF) was used to calculate FLASH-enhanced dose distribution. The EQD2-IOF plan was compared to the plan optimized without SDSMO using BAC selected by a medical physicist (Manual plan) in the SBPF treatment schedule. Meanwhile, the mean EQD2 in the normal tissue was evaluated for the EQD2-IOF plan in both SBPF and ABPF treatment schedules. RESULTS: No significant difference was found in D2% and D98% of the target between EQD2-IOF plans and Manual Plans. When using a minimum DMF of 0.67 and a dose threshold of 4 Gy, EQD2-IOF plans showed a significant reduction in FLASH-enhanced EQD2mean of the ipsilateral lung and normal tissue by 10.5% and 11.5%, respectively, compared to Manual plans. For normal tissues that received a dose greater than 70% of the prescription dose, using a minimum DMF of 0.7 for FLASH sparing compensated for the increase in EQD2mean resulting from replacing ABPF with SBPF schedules. CONCLUSIONS: The EQD2-IOF can automatically optimize SBPF FLASH-RT plans to achieve optimal sparing of normal tissues. With an energy switching time of 27 ms, the loss of fractionate repairing using SBPF schedules in high-dose regions can be compensated for by the FLASH effect. However, when an energy switching time of 500 ms is utilized, the SBPF schedule needs careful consideration, as the FLASH effect diminishes with longer irradiation time.

10.
J Adv Res ; 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39079584

RESUMO

INTRODUCTION: Nav1.6 is closely related to the pathology of Alzheimer's Disease (AD), and astrocytes have recently been identified as a significant source of ß-amyloid (Aß). However, little is known about the connection between Nav1.6 and astrocyte-derived Aß. OBJECTIVE: This study explored the crucial role of Nav1.6 in mediated astrocyte-derived Aß in AD and knockdown astrocytic Nav1.6 alleviates AD progression by promoting autophagy and lysosome-APP fusion. METHODS: A mouse model for astrocytic Nav1.6 knockdown was constructed to study the effects of astrocytic Nav1.6 on amyloidosis. The role of astrocytic Nav1.6 on autophagy and lysosome-APP(amyloid precursor protein) fusion was used by transmission electron microscope, immunostaining, western blot and patch clamp. Glial cell activation was detected using immunostaining. Neuroplasticity and neural network were assessed using patch-clamp, Golgi stain and EEG recording. Behavioral experiments were performed to evaluate cognitive defects. RESULTS: Astrocytic Nav1.6 knockdown reduces amyloidosis, alleviates glial cell activation and morphological complexity, improves neuroplasticity and abnormal neural networks, as well as promotes learning and memory abilities in APP/PS1 mice. Astrocytic Nav1.6 knockdown reduces itself-derived Aß by promoting lysosome- APP fusion, which is related to attenuating reverse Na+-Ca2+ exchange current thus reducing intracellular Ca2+ to facilitate autophagic through AKT/mTOR/ULK pathway. CONCLUSION: Our findings unveil the crucial role of astrocyte-specific Nav1.6 in reducing astrocyte-derived Aß, highlighting its potential as a cell-specific target for modulating AD progression.

11.
Front Oncol ; 14: 1372424, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884079

RESUMO

Introduction: Young cervical cancer patients who require ovarian transposition usually have their ovaries moved away from the pelvic radiotherapy (RT) field before radiotherapy. The dose of ovaries during radiotherapy is closely related to the location of the ovaries. To protect ovarian function and avoid ovarian dose exceeding the limits, a safe location of transposed ovary must be determined prior to surgery. Methods: For this purpose, we input the patient's preoperative CT into a neural network model to predict the dose distribution. Surgeons were able to quickly locate low-dose regions based on the dose distribution before surgery, thus determining the safe location of the transposed ovary. In this work, we proposed a new progressive refinement transformer model PRT-Net that can generate dose prediction at multiple scale resolutions in one forward propagation, and refine the dose prediction using prediction details from low to high resolution based on a deep supervision strategy. A multi-loss function fusion algorithm was also built to fit the prediction results under different loss dimensions. The clinical feasibility of the method was verified through an actual cases. Results and discussion: Therefore, using PRT-Net to predict the dose distribution by preoperative CT in cervical cancer patients can assist clinicians to perform ovarian transposition surgery and prevent patients' ovaries from exceeding the prescribed dose limit in postoperative radiotherapy.

12.
Natl Sci Rev ; 11(7): nwae190, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38938275

RESUMO

Heterogeneous catalysis promises to accelerate sulfur-involved conversion reactions in lithium-sulfur batteries. Solid-state Li2S dissociation remains as the rate-limiting step because of the weakly matched solid-solid electrocatalysis interfaces. We propose an electrochemically molecular-imprinting strategy to have a metal sulfide (MS) catalyst with imprinted defects in positions from which the pre-implanted Li2S has been electrochemically removed. Such tailor-made defects enable the catalyst to bind exclusively to Li atoms in Li2S reactant and elongate the Li-S bond, thus decreasing the reaction energy barrier during charging. The imprinted Ni3S2 catalyst shows the best activity due to the highest defect concentration among the MS catalysts examined. The Li2S oxidation potential is substantially reduced to 2.34 V from 2.96 V for the counterpart free of imprinted vacancies, and an Ah-level pouch cell is realized with excellent cycling performance. With a lean electrolyte/sulfur ratio of 1.80 µL mgS -1, the cell achieves a benchmarkedly high energy density beyond 500 Wh kg-1.

13.
Adv Sci (Weinh) ; 11(31): e2402497, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38884340

RESUMO

Catalysis is crucial to improve redox kinetics in lithium-sulfur (Li-S) batteries. However, conventional catalysts that consist of a single metal element are incapable of accelerating stepwise sulfur redox reactions which involve 16-electron transfer and multiple Li2Sn (n = 2-8) intermediate species. To enable fast kinetics of Li-S batteries, it is proposed to use high-entropy alloy (HEA) nanocatalysts, which are demonstrated effective to adsorb lithium polysulfides and accelerate their redox kinetics. The incorporation of multiple elements (Co, Ni, Fe, Pd, and V) within HEAs greatly enhances the catalytically active sites, which not only improves the rate capability, but also elevates the cycling stability of the assembled batteries. Consequently, HEA-catalyzed Li-S batteries achieve a high capacity up to 1364 mAh g-1 at 0.1 C and experience only a slight capacity fading rate of 0.054% per cycle over 1000 cycles at 2 C, while the assembled pouch cell achieves a high specific capacity of 1192 mAh g-1. The superior performance of Li-S batteries demonstrates the effectiveness of the HEA catalysts with maximized synergistic effect for accelerating S conversion reactions, which opens a way to catalytically improving stepwise electrochemical conversion reactions.

14.
ACS Appl Mater Interfaces ; 16(27): 35208-35216, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38936813

RESUMO

The unsatisfactory oxygen reduction reaction (ORR) kinetics caused by the inherent lean-oxygen marine environment brings low power density for metal-dissolved oxygen seawater batteries (SWBs). In this study, we propose a seawater/electrode interfacial engineering strategy by constructing a hydrophobic coating to realize enhanced mass transfer of dissolved oxygen for the fully immersed cathode of SWBs. Accumulation of dissolved oxygen from seawater to the catalyst is particularly beneficial for improving the ORR performance under lean-oxygen conditions. As a result, SWB assembled with a hydrophobic cathode achieved a power density of up to 2.32 mW cm-2 and sustained discharge at 1.3 V for 250 h. Remarkably, even in environments with an oxygen concentration of 4 mg L-1, it can operate at a voltage approximately 100 mV higher than that of an unmodified SWB. The introduction of a hydrophobic interface enhances the discharge voltage and power of SWBs by improving interfacial oxygen mass transfer, providing new insights into improving the underwater ORR performance for practical SWBs.

15.
Adv Mater ; 36(33): e2406071, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38899999

RESUMO

Developing hydrophobic interface has proven effective in addressing dendrite growth and side reactions during zinc (Zn) plating in aqueous Zn batteries. However, this solution inadvertently impedes the solvation of Zn2+ with H2O and subsequent ionic transport during Zn stripping, leading to insufficient reversibility. Herein, an adaptive hydrophobic interface that can be switched "on" and "off" by ionic valves to accommodate the varying demands for interfacial H2O during both the Zn plating and stripping processes, is proposed. This concept is validated using octyltrimethyl ammonium bromide (C8TAB) as the ionic valve, which can initiatively establish and remove a hydrophobic interface in response to distinct electric-field directions during Zn plating and stripping, respectively. Consequently, the Zn anode exhibits an extended cycling life of over 2500 h with a high Coulombic efficiency of ≈99.8%. The full cells also show impressive capacity retention of over 85% after 1 000 cycles at 5 A g-1. These findings provide a new insight into interface design for aqueous metal batteries.

16.
Exp Neurol ; 379: 114825, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38777251

RESUMO

Alzheimer's disease (AD) is a devastating neurodegenerative disorder that leads to progressive cognitive decline and neuropathological changes. Pericytes, which are vessel mural cells on the basement membrane of capillaries, play a crucial role in regulating cerebrovascular functions and maintaining neurovascular unit integrity. Emerging research substantiates the involvement of pericytes in AD. This review provides a comprehensive overview of pericytes, including their structure, origin, and markers and various functions within the central nervous system. Emphatically, the review explores the intricate mechanisms through which pericytes contribute to AD, including their interactions with amyloid beta and apolipoprotein E, as well as various signaling pathways. The review also highlights potential for targeted pericyte therapy for AD, with a focus on stem cell therapy and drug treatments. Future research directions include the classification of pericyte subtypes, studies related to aging, and the role of pericytes in exosome-related mechanisms in AD pathology. In conclusion, this review consolidates current knowledge on the pivotal roles of pericytes in AD and their potential as therapeutic targets, providing valuable insights for future research and clinical interventions aimed at addressing the impact of AD on patients' lives.


Assuntos
Doença de Alzheimer , Pericitos , Pericitos/patologia , Pericitos/metabolismo , Pericitos/fisiologia , Humanos , Doença de Alzheimer/terapia , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Animais , Peptídeos beta-Amiloides/metabolismo
17.
J Hazard Mater ; 472: 134476, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38691996

RESUMO

1,2-Dichloroethane (1,2-DCA), a widely utilized chemical intermediate and organic solvent in industry, frequently enters the environment due to accidental leaks and mishandling during application processes. Thus, the in-situ remediation of contaminated sites has become increasingly urgent. However, traditional remediation methods are inefficient and costly, while bioremediation presents a green, efficient, and non-secondary polluting alternative. In this study, an engineered strain capable of completely degrading 1,2-DCA was constructed. We introduced six exogenous genes of the 1,2-DCA degradation pathway into E. coli and confirmed their normal transcription and efficient expression in this engineered strain through qRT-PCR and proteomics. The degradation experiments showed that the strain completely degraded 2 mM 1,2-DCA within 12 h. Furthermore, the results of isotope tracing verified that the final degradation product, malic acid, entered the tricarboxylic acid cycle (TCA) of E. coli and was ultimately fully metabolized. Also, morphological changes in the engineered strain and control strain exposed to 1,2-DCA were observed under SEM, and the results revealed that the engineered strain is more tolerant to 1,2-DCA than the control strain. In conclusion, this study paved a new way for humanity to deal with the increasingly complex environmental challenges.


Assuntos
Biodegradação Ambiental , Escherichia coli , Dicloretos de Etileno , Engenharia Metabólica , Dicloretos de Etileno/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética
18.
Nat Commun ; 15(1): 3892, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719816

RESUMO

As a sustainable alternative to fossil fuel-based manufacture of bulk oxygenates, electrochemical synthesis using CO and H2O as raw materials at ambient conditions offers immense appeal. However, the upscaling of the electrosynthesis of oxygenates encounters kinetic bottlenecks arising from the competing hydrogen evolution reaction with the selective production of ethylene. Herein, a catalytic relay system that can perform in tandem CO capture, activation, intermediate transfer and enrichment on a Cu-Ag composite catalyst is used for attaining high yield CO-to-oxygenates electrosynthesis at high current densities. The composite catalyst Cu/30Ag (molar ratio of Cu to Ag is 7:3) enables high efficiency CO-to-oxygenates conversion, attaining a maximum partial current density for oxygenates of 800 mA cm-2 at an applied current density of 1200 mA cm-2, and with 67 % selectivity. The ability to finely control the production of ethylene and oxygenates highlights the principle of efficient catalyst design based on the relay mechanism.

19.
J Am Chem Soc ; 146(22): 15209-15218, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38775661

RESUMO

Solid electrolyte interphases (SEIs) are sought to protect high-capacity anodes, which suffer from severe volume changes and fast degradations. The previously proposed effective SEIs were of high strength yet abhesive, inducing a yolk-shell structure to decouple the rigid SEI from the anode for accommodating the volume change. Ambivalently, the interfacial void-evolved electro-chemo-mechanical vulnerabilities become inherent defects. Here, we establish a new rationale for SEIs that resilience and adhesivity are both requirements and pioneer a design of a resilient yet adhesive SEI (re-ad-SEI), integrated into a conjugated surface bilayer structure. The re-ad-SEI and its protected particles exhibit excellent stability almost free from the thickening of SEI and the particle pulverization during cycling. More promisingly, the dynamically bonded intact SEI-anode interfaces enable a high-efficiency ion transport and provide a unique mechanical confinement effect for structural integrity of anodes. The high Coulombic efficiency (>99.8%), excellent cycling stability (500 cycles), and superior rate performance have been demonstrated in microsized Si-based anodes.

20.
Adv Mater ; 36(27): e2400937, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38634714

RESUMO

Alkali metal-air batteries (AMABs) promise ultrahigh gravimetric energy densities, while the inherent poor cycle stability hinders their practical application. To address this challenge, most previous efforts are devoted to advancing the air cathodes with high electrocatalytic activity. Recent studies have underlined the solid-liquid-gas triple-phase interface around the anode can play far more significant roles than previously acknowledged by the scientific community. Besides the bottlenecks of uncontrollable dendrite growth and gas evolution in conventional alkali metal batteries, the corrosive gases, intermediate oxygen species, and redox mediators in AMABs cause more severe anode corrosion and structural collapse, posing greater challenges to the stabilization of the anode triple-phase interface. This work aims to provide a timely perspective on the anode interface engineering for durable AMABs. Taking the Li-air battery as a typical example, this critical review shows the latest developed anode stabilization strategies, including formulating electrolytes to build protective interphases, fabricating advanced anodes to improve their anti-corrosion capability, and designing functional separator to shield the corrosive species. Finally, the remaining scientific and technical issues from the prospects of anode interface engineering are highlighted, particularly materials system engineering, for the practical use of AMABs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA