Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Funct Biomater ; 15(4)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38667545

RESUMO

Nerve guidance conduits for peripheral nerve injuries can be improved using bioactive materials such as magnesium (Mg) and its alloys, which could provide both structural and trophic support. Therefore, we investigated whether exposure to Mg and Mg-1.6wt%Li thin films (Mg/Mg-1.6Li) would alter acute Schwann cell responses to injury. Using the RT4-D6P2T Schwannoma cell line (SCs), we tested extracts from freeze-killed cells (FKC) and nerves (FKN) as in vitro injury stimulants. Both FKC and FKN induced SC release of the macrophage chemoattractant protein 1 (MCP-1), a marker of the repair SC phenotype after injury. Next, FKC-stimulated cells exposed to Mg/Mg-1.6Li reduced MCP-1 release by 30%, suggesting that these materials could have anti-inflammatory effects. Exposing FKC-treated cells to Mg/Mg-1.6Li reduced the gene expression of the nerve growth factor (NGF), glial cell line-derived neurotrophic factor (GDNF), and myelin protein zero (MPZ), but not the p75 neurotrophin receptor. In the absence of FKC, Mg/Mg-1.6Li treatment increased the expression of NGF, p75, and MPZ, which can be beneficial to nerve regeneration. Thus, the presence of Mg can differentially alter SCs, depending on the microenvironment. These results demonstrate the applicability of this in vitro nerve injury model, and that Mg has wide-ranging effects on the repair SC phenotype.

2.
Acta Biomater ; 178: 307-319, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382831

RESUMO

Lithium (Li), a widely used drug for bipolar disorder management, is associated with many side effects due to systemic exposure. The localized delivery of lithium through implants could be an approach to overcome this challenge, for which biodegradable magnesium (Mg)-based materials are a promising choice. In this study, we focus on Mg-Li thin film alloys as potential Li-releasing implants. Therefore, we investigated the in vitro short-term corrosion behavior and cytocompatibility of two alloys, Mg-1.6wt%Li and Mg-9.5wt%Li. As glial cells are the key players of foreign body responses to implants, we used human glial cell lines for cytocompatibility studies, and a murine brain slice model for a more holistic view at the neuroinflammatory response. We found that Mg-1.6wt%Li corrodes approximately six times slower than Mg-9.5wt%Li. Microscopic analysis showed that the material surface (Mg-1.6wt%Li) is suitable for cell adhesion. The cytocompatibility test with Mg-1.6wt%Li and Mg-9.5wt%Li alloy extracts revealed that both cell types proliferated well up to 10 mM Mg concentration, irrespective of the Li concentration. In the murine brain slice model, Mg-1.6wt%Li and Mg-9.5wt%Li alloy extracts did not provoke a significant upregulation of glial inflammatory/ reactivity markers (IL-1ß, IL-6, FN1, TNC) after 24 h of exposure. Furthermore, the gene expression of IL-1ß (up to 3-fold) and IL-6 (up to 16-fold) were significantly downregulated after 96 h, and IL-6 downregulation showed a Li concentration dependency. Together, these results indicate the acute cytocompatibility of two Mg-Li thin film alloys and provide basis for future studies to explore promising applications of the material. STATEMENT OF SIGNIFICANCE: We propose the idea of lithium delivery to the brain via biodegradable implants to reduce systemic side effects of lithium for bipolar disorder therapy and other neurological applications. This is the first in vitro study investigating Mg-xLi thin film degradation under physiological conditions and its influence on cellular responses such as proliferation, viability, morphology and inflammation. Utilizing human brain-derived cell lines, we showed that the material surface of such a thin film alloy is suitable for normal cell attachment. Using murine brain slices, which comprise a multicellular network, we demonstrated that the material extracts did not elicit a pro-inflammatory response. These results substantiate that degradable Mg-Li materials are biocompatible and support the further investigation of their potential as neurological implants.


Assuntos
Lítio , Magnésio , Humanos , Animais , Camundongos , Lítio/farmacologia , Magnésio/farmacologia , Interleucina-6 , Implantes Absorvíveis , Neuroglia , Ligas/farmacologia , Inflamação , Corrosão , Teste de Materiais
3.
Sci Rep ; 13(1): 12572, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537223

RESUMO

Freestanding thin films of Mg-Li (magnesium-lithium) alloys with a Li mass fraction between 1.6% (m/m) and 9.5% (m/m) were prepared and studied with respect to their structure and degradation properties. With increasing Li content, the microstructure deviates from hexagonal Mg-Li with strict columnar growth and preferred orientation, and additional cubic Mg-Li and Li2CO3 occur. The corrosion rate was measured in Hanks' balanced salt solution by potentiodynamic polarisation and weight loss measurements to investigate biodegradation. Influences of the orientation, phase and protective layer formation lead to an increase in corrosion from 1.6 to 5.5% (m/m) from 0.13 ± 0.03 to 0.67 ± 0.29 mm/year when measured by potentiodynamic polarisation but a similar corrosion rate for 9.5% (m/m) and 3% (m/m) of Li of 0.27 ± 0.07 mm/year and 0.26 ± 0.05 mm/year.

4.
Sci Rep ; 13(1): 8446, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231050

RESUMO

Magnetoelastic composites which use surface acoustic waves show great potential as sensors of low frequency and very low amplitude magnetic fields. While these sensors already provide adequate frequency bandwidth for most applications, their detectability has found its limitation in the low frequency noise generated by the magnetoelastic film. Amongst other contributions, this noise is closely connected to domain wall activity evoked by the strain from the acoustic waves propagating through the film. A successful method to reduce the presence of domain walls is to couple the ferromagnetic material with an antiferromagnetic material across their interface and therefore induce an exchange bias. In this work we demonstrate the application of a top pinning exchange bias stack consisting of ferromagnetic layers of (Fe90Co10)78Si12B10 and Ni81Fe19 coupled to an antiferromagnetic Mn80Ir20 layer. Stray field closure and hence prevention of magnetic edge domain formation is achieved by an antiparallel biasing of two consecutive exchange bias stacks. The set antiparallel alignment of magnetization provides single domain states over the complete films. This results in a reduction of magnetic phase noise and therefore provides limits of detection as low as 28 pT/Hz1/2 at 10 Hz and 10 pT/Hz1/2 at 100 Hz.

5.
Sensors (Basel) ; 22(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35161764

RESUMO

Dedicated research is currently being conducted on novel thin film magnetoelectric (ME) sensor concepts for medical applications. These concepts enable a contactless magnetic signal acquisition in the presence of large interference fields such as the magnetic field of the Earth and are operational at room temperature. As more and more different ME sensor concepts are accessible to medical applications, the need for comparative quality metrics significantly arises. For a medical application, both the specification of the sensor itself and the specification of the readout scheme must be considered. Therefore, from a medical user's perspective, a system consideration is better suited to specific quantitative measures that consider the sensor readout scheme as well. The corresponding sensor system evaluation should be performed in reproducible measurement conditions (e.g., magnetically, electrically and acoustically shielded environment). Within this contribution, an ME sensor system evaluation scheme will be described and discussed. The quantitative measures will be determined exemplarily for two ME sensors: a resonant ME sensor and an electrically modulated ME sensor. In addition, an application-related signal evaluation scheme will be introduced and exemplified for cardiovascular application. The utilized prototype signal is based on a magnetocardiogram (MCG), which was recorded with a superconducting quantum-interference device. As a potential figure of merit for a quantitative signal assessment, an application specific capacity (ASC) is introduced. In conclusion, this contribution highlights metrics for the quantitative characterization of ME sensor systems and their resulting output signals in biomagnetism. Finally, different ASC values and signal-to-noise ratios (SNRs) could be clearly presented for the resonant ME sensor (SNR: -90 dB, ASC: 9.8×10-7 dB Hz) and also the electrically modulated ME sensor (SNR: -11 dB, ASC: 23 dB Hz), showing that the electrically modulated ME sensor is better suited for a possible MCG application under ideal conditions. The presented approach is transferable to other magnetic sensors and applications.


Assuntos
Coração , Campos Magnéticos , Magnetismo , Razão Sinal-Ruído
6.
Sensors (Basel) ; 21(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34960260

RESUMO

In this work, the first surface acoustic-wave-based magnetic field sensor using thin-film AlScN as piezoelectric material deposited on a silicon substrate is presented. The fabrication is based on standard semiconductor technology. The acoustically active area consists of an AlScN layer that can be excited with interdigital transducers, a smoothing SiO2 layer, and a magnetostrictive FeCoSiB film. The detection limit of this sensor is 2.4 nT/Hz at 10 Hz and 72 pT/Hz at 10 kHz at an input power of 20 dBm. The dynamic range was found to span from about ±1.7 mT to the corresponding limit of detection, leading to an interval of about 8 orders of magnitude. Fabrication, achieved sensitivity, and noise floor of the sensors are presented.

7.
Nature ; 599(7885): 416-420, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34789904

RESUMO

The systematic tuning of crystal lattice parameters to achieve improved kinematic compatibility between different phases is a broadly effective strategy for improving the reversibility, and lowering the hysteresis, of solid-solid phase transformations1-11. (Kinematic compatibility refers to the fitting together of the phases.) Here we present an apparently paradoxical example in which tuning to near perfect kinematic compatibility results in an unusually high degree of irreversibility. Specifically, when cooling the kinematically compatible ceramic (Zr/Hf)O2(YNb)O4 through its tetragonal-to-monoclinic phase transformation, the polycrystal slowly and steadily falls apart at its grain boundaries (a process we term weeping) or even explosively disintegrates. If instead we tune the lattice parameters to satisfy a stronger 'equidistance' condition (which additionally takes into account sample shape), the resulting material exhibits reversible behaviour with low hysteresis. These results show that a diversity of behaviours-from reversible at one extreme to explosive at the other-is possible in a chemically homogeneous ceramic system by manipulating conditions of compatibility in unexpected ways. These concepts could prove critical in the current search for a shape-memory oxide ceramic9-12.

8.
Sensors (Basel) ; 21(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34451074

RESUMO

Surface acoustic wave (SAW) sensors for the detection of magnetic fields are currently being studied scientifically in many ways, especially since both their sensitivity as well as their detectivity could be significantly improved by the utilization of shear horizontal surface acoustic waves, i.e., Love waves, instead of Rayleigh waves. By now, low-frequency limits of detection (LOD) below 100 pT/Hz can be achieved. However, the LOD can only be further improved by gaining a deep understanding of the existing sensor-intrinsic noise sources and their impact on the sensor's overall performance. This paper reports on a comprehensive study of the inherent noise of SAW delay line magnetic field sensors. In addition to the noise, however, the sensitivity is of importance, since both quantities are equally important for the LOD. Following the necessary explanations of the electrical and magnetic sensor properties, a further focus is on the losses within the sensor, since these are closely linked to the noise. The considered parameters are in particular the ambient magnetic bias field and the input power of the sensor. Depending on the sensor's operating point, various noise mechanisms contribute to f0 white phase noise, f-1 flicker phase noise, and f-2 random walk of phase. Flicker phase noise due to magnetic hysteresis losses, i.e. random fluctuations of the magnetization, is usually dominant under typical operating conditions. Noise characteristics are related to the overall magnetic and magnetic domain behavior. Both calculations and measurements show that the LOD cannot be further improved by increasing the sensitivity. Instead, the losses occurring in the magnetic material need to be decreased.

9.
Sci Rep ; 11(1): 10988, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34040022

RESUMO

We describe the design and fabrication of miniaturized origami structures based on thin-film shape memory alloys. These devices are attractive for medical implants, as they overcome the opposing requirements of crimping the implant for insertion into an artery while keeping sensitive parts of the implant nearly stress-free. The designs are based on a group theory approach in which compatibility at a few creases implies the foldability of the whole structure. Importantly, this approach is versatile and thus provides a pathway for patient-specific treatment of brain aneurysms of differing shapes and sizes. The wafer-based monolithic fabrication method demonstrated here, which comprises thin-film deposition, lithography, and etching using sacrificial layers, is a prerequisite for any integrated self-folding mechanism or sensors and will revolutionize the availability of miniaturized implants, allowing for new and safer medical treatments.

10.
Expert Rev Med Devices ; 18(6): 569-579, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33890849

RESUMO

PURPOSE: Braided flow diverters (FD) are highly sophisticated, delicate, and intricate mechanical devices used to treat intracranial aneurysms. Testing such devices in vitro, however, remains an unsolved challenge. Here, we evaluate methods to measure flow, design and mechanical properties in vitro. METHODS: Flow properties, cell porosity, pore density, and cell area were evaluated under geometrically realistic conditions by placing FDs in patient-derived, 3D-printed models of human vasculature. 4D flow MRI was used to measure fluid dynamics. Laser microscopy was used to measure the design properties of the FDs. New methods were developed to investigate the bending, circumferential, and longitudinal radial force of the FDs continuously over varying diameters. RESULTS: The placement and flow properties of the FD in the vasculature models were successfully measured by MRI, although artifacts occurred. Likewise, the porosity, pore density, and cell area were successfully measured inside of the models using a laser microscope. The newly developed mechanical methods allowed to measure the indicated forces - to our knowledge for the first time - continuously. CONCLUSION: Modern and specifically tailored techniques, some of which were presented here for the first time, allow detailed insights into the flow, design, and mechanical properties of braided flow diverter stents.


Assuntos
Aneurisma Intracraniano , Stents , Simulação por Computador , Humanos , Aneurisma Intracraniano/cirurgia , Porosidade
11.
Clin Neuroradiol ; 31(4): 1181-1186, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33491133

RESUMO

PURPOSE: In the interventional treatment of cerebral aneurysms, flow diverter (FD) stents have played a significant role for more than a decade. Many studies have shown good aneurysm occlusion rates and low complication profiles. However, feared complications include acute thrombotic vessel occlusion due to stenotic deformation of the FD during release, the so-called twisting. This work investigates the behavior of different stent types to causative torsion forces in a mechanical model. MATERIALS AND METHODS: Torsion characterization equipment was custom built, and two different FD stents (Derivo, Acandis and P64, Phenox) with n = 3 were tested. One end of the FD was fixed while the other end was twisted while measuring the torsion force. RESULTS: In torsional force vs. the twisting angle graph, a very sharp decrease and increase in force was recorded when the stent collapsed or reopened, respectively, making it possible to characterize for twisting. All six devices showed partial/complete collapse on torsion and showed significant delayed reopening on untwisting. Interestingly on repeated testing, the stent collapsed at earlier angles, probably due to microscopic material defects. Slight variations between stents of the same type suggest that more extensive data sets are needed. CONCLUSIONS: We report a new method to characterize torsion for braided FD stents, which is reliable and reproducible. Additionally, the delayed reopening and the tendency to collapse at earlier angles on consequent testing maneuvers can be significant for clinical usage.


Assuntos
Aneurisma Intracraniano , Stents , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/cirurgia , Resultado do Tratamento
12.
Sensors (Basel) ; 20(12)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560492

RESUMO

A surface-acoustic-wave (SAW) magnetic-field sensor utilizing fundamental, first- and second-order Love-wave modes is investigated. A 4.5   µ m SiO2 guiding layer on an ST-cut quartz substrate is coated with a 200 n m (Fe90Co10)78Si12B10 magnetostrictive layer in a delay-line configuration. Love-waves are excited and detected by two interdigital transducers (IDT). The delta-E effect in the magnetostrictive layer causes a phase change with applied magnetic field. A sensitivity of 1250 ° / m T is measured for the fundamental Love mode at 263 M Hz . For the first-order Love mode a value of 45 ° / m T is obtained at 352 M Hz . This result is compared to finite-element-method (FEM) simulations using one-dimensional (1D) and two-and-a-half-dimensional (2.5 D) models. The FEM simulations confirm the large drop in sensitivity as the first-order mode is close to cut-off. For multi-mode operation, we identify as a suitable geometry a guiding layer to wavelength ratio of h GL / λ ≈ 1.5 for an IDT pitch of p = 12   µ m . For this layer configuration, the first three modes are sufficiently far away from cut-off and show good sensitivity.

13.
Sci Rep ; 10(1): 3496, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32103069

RESUMO

Recent demonstrations of both heat-to-electricity energy conversion devices and electrocaloric devices based on first-order ferroelectric phase transformations identify the lowering of hysteresis and cyclic reversibility of the transformation as enabling criteria for the advancement of this technology. These demonstrations, and recent studies of the hysteresis of phase transformations in oxides, show that satisfying conditions of supercompatibility can be useful for lowering hysteresis, but with limitations for systems with only a few variants of the lower symmetry phase. In particular, it is widely accepted that in a classic cubic-to-tetragonal phase transformation, with only three tetragonal variants having only six twin systems, tuning for improved crystallographic compatibility will be of limited value. This work shows that, on the contrary, the tuning of lattice parameters in Ba(Ti1-xZrx)O3 for improved crystallographic compatibility, even at low doping levels of Zr (x ≤ 0.027), give significant improvement of transformation and ferroelectric energy conversion properties. Specifically, the transformation hysteresis is lowered by 25%, and the maximum value of the polarization/temperature ratio dP/dT at the phase transformation is increased by 10%.

14.
Sci Rep ; 9(1): 19775, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31875003

RESUMO

This work presents the suppression of abnormal grain growth in bulk ceramic K0.5Na0.5NbO3 (KNN). The suppression is enabled by precise control of the starting powder morphology through match of milling and calcination duration. A comparative temperature-dependent analysis of the resulting sample morphology, phase transitions and related electronic material properties reveals that abnormal grain growth is indeed a major influence in material property deterioration, as has theoretically been suggested in other works. However, it is shown that this abnormal grain growth originates from the calcined powder and not from sintering and that all subsequent steps mirror the initial powder morphology. In specific, the results are discussed with respect to the predictions of the compatibility theory and microstructure. Despite the material's multi-scale heterogeneity, the suppression of abnormal grain growth allows for the achievement of significantly improved functional properties and it is reported that this development is correctly predicted by the compatibility theory within the borders of microstructural integrity. It could be demonstrated that functional fatigue is strongly minimised, while thermal and electronic properties are improved when abnormal grain growth is suppressed by powder morphology control.

15.
Materials (Basel) ; 12(14)2019 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-31337062

RESUMO

The strong strain-mediated magnetoelectric (ME) coupling found in thin-film ME heterostructures has attracted an ever-increasing interest and enables realization of a great number of integrated multiferroic devices, such as magnetometers, mechanical antennas, RF tunable inductors and filters. This paper first reviews the thin-film characterization techniques for both piezoelectric and magnetostrictive thin films, which are crucial in determining the strength of the ME coupling. After that, the most recent progress on various integrated multiferroic devices based on thin-film ME heterostructures are presented. In particular, rapid development of thin-film ME magnetometers has been seen over the past few years. These ultra-sensitive magnetometers exhibit extremely low limit of detection (sub-pT/Hz1/2) for low-frequency AC magnetic fields, making them potential candidates for applications of medical diagnostics. Other devices reviewed in this paper include acoustically actuated nanomechanical ME antennas with miniaturized size by 1-2 orders compared to the conventional antenna; integrated RF tunable inductors with a wide operation frequency range; integrated RF tunable bandpass filter with dual H- and E-field tunability. All these integrated multiferroic devices are compact, lightweight, power-efficient, and potentially integrable with current complementary metal oxide semiconductor (CMOS) technology, showing great promise for applications in future biomedical, wireless communication, and reconfigurable electronic systems.

16.
Acta Biomater ; 98: 81-87, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31141735

RESUMO

Magnesium based alloys are of great interest for temporary medical applications. In order to tailor the corrosion rate, Mg is often alloyed with other elements for the envisaged application as a biodegradable medical implant. In this study 10 µm thick freestanding MgAg thin film samples with varied Ag concentrations (nominal 2-10 wt%) are presented. These films could have the potential as scaffolds, e.g. in neurological applications. The films are fabricated by a combination of UV lithography, sacrificial layer technique and magnetron sputtering, where the latter allows the fabrication of supersaturated metastable alloys. After removing the sacrificial layer, the released freestanding thin film samples are investigated. The corrosion properties are determined using potentiodynamic polarization measurements in Hanks' balanced salt solution. The microstructure investigations are done by X-ray diffraction and scanning transmission electron microscopy. The results obtained show that it is possible using magnetron sputtering to achieve supersaturated materials with up to 6 wt% Ag which show a significant decrease in the corrosion rate compared to pure Mg by a factor of approximately three (0.04 ±â€¯0.01 mm/yr compared to 0.12 ±â€¯0.02 mm/yr). STATEMENT OF SIGNIFICANCE: In this study magnetron sputtered freestanding MgAg films with a Ag concentration of 2-10 wt% were investigated in terms of corrosion properties and microstructure. The 10 µm thick films were produced by a combination of UV lithography and magnetron sputtering, the latter allows the fabrication of supersaturated alloys. It was possible to fabricate participate free materials up to 6 wt% Ag, which showed a decrease in the corrosion rate by the factor of 3 compared to pure Mg. For materials with 10 wt% it was not possible to obtain single phasematerials, in this case the corrosion rate was increased by a factor of approximately 20 compared to pure Mg due to the formation of galvanic cells.


Assuntos
Magnésio/química , Prata/química , Corrosão , Lasers , Tamanho da Partícula , Espectrometria por Raios X , Difração de Raios X
17.
Sci Rep ; 9(1): 2086, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30765847

RESUMO

Magnetic nanoparticles (MNPs) are a hot topic in the field of medical life sciences, as they are highly relevant in diagnostic applications. In this regard, a large variety of novel imaging methods for MNP in biological systems have been invented. In this proof-of-concept study, a new and novel technique is explored, called Magnetic Particle Mapping (MPM), using resonant magnetoelectric (ME) sensors for the detection of MNPs that could prove to be a cheap and efficient way to localize the magnetic nanoparticles. The simple and straightforward setup and measurement procedure includes the detection of higher harmonic excitations of MNP ensembles. We show the feasibility of this approach by building a measurement setup particularly suited to exploit the inherent sensor properties. We measure the magnetic response from 2D MNP distributions and reconstruct the distribution by solving the inverse problem. Furthermore, biological samples with magnetically labeled cells were measured and reconstruction of the distribution was compared with light microscope images. Measurement results suggest that the approach presented here is promising for MNP localization.

18.
Rofo ; 190(11): 1053-1058, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29913521

RESUMO

PURPOSE: Various stent retrievers differing in stent design and mechanical properties are currently available for the treatment of ischemic stroke. We conducted this in vitro study to compare the efficacy, embolism rate, and safety of commercially available stent retrievers and prototypes. MATERIALS AND METHODS: Whole blood thrombi were produced in a Chandler loop. The thrombi were inserted into the curved M1 segment of a silicone model of the anterior cerebral circulation. Thrombectomy maneuvers were performed with six commercially available stent retrievers and 2 prototypes with different strut thickness. Wall-stent apposition, first pass recanalization rate, retraction force, and embolism rate were compared. RESULTS: Devices with complete wall-stent apposition had the highest first pass recanalization rate and lowest embolism rate, but showed the highest retraction force. The prototype with thinner struts had a comparable recanalization and embolism rate, while a lower retraction force had to be applied compared to the prototype with thicker struts. CONCLUSION: Complete wall-stent apposition facilitates a higher recanalization rate and lower embolism rate but also correlates to a higher necessary retraction force and thus possibly higher risk of endothelium damage. Stent modifications leading to a reduced retraction force do not compromise efficacy and embolism rate. KEY POINTS: · Complete wall-stent apposition facilitates an effective thrombectomy. · Complete wall-stent apposition leads to higher retraction force and possibly greater endothelium damage. · Modifications of strut thickness do not compromise recanalization and embolism rate. · Thinner struts correlate with a lower retraction force. CITATION FORMAT: · Larsen N, Oberbeck K, Lima de Miranda R et al. Comparison of Efficacy, Embolism Rate and Safety of Thrombectomy with Stent Retrievers in an Anterior Circulation Stroke Model. Fortschr Röntgenstr 2018; 190: 1053 - 1058.


Assuntos
Infarto Encefálico/cirurgia , Remoção de Dispositivo/instrumentação , Procedimentos Endovasculares/instrumentação , Modelos Cardiovasculares , Stents , Acidente Vascular Cerebral/cirurgia , Trombectomia/instrumentação , Ligas , Desenho de Equipamento , Humanos , Técnicas In Vitro , Embolia Intracraniana/etiologia , Complicações Pós-Operatórias/etiologia , Estudo de Prova de Conceito
19.
Materials (Basel) ; 11(4)2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29570633

RESUMO

FeMn alloys show a great potential for the use as a biodegradable material for medical vascular implants. To optimize the material properties, with respect to the intended application, new fabrication methods also have to be investigated. In this work different Fe-FeMn32 multilayer films were deposited by magnetron sputtering. The deposition was done on a substrate structured by UV lithography. This technique allows the fabrication of in-situ structured foils. In order to investigate the influence of the Mn content on the material properties foils with an overall Mn content of 5, 10, 15, and 17 wt % were fabricated. The freestanding foils were annealed post-deposition, in order to homogenize them and adjust the material properties. The material was characterized in terms of microstructure, corrosion, mechanical, and magnetic properties using X-ray diffraction, electron microscopy, electrochemical polarization, immersion tests, uniaxial tensile tests, and vibrating sample magnetometry. Due to the unique microstructure that can be achieved by the fabrication via magnetron sputtering, the annealed foils showed a high mechanical yield strength (686-926 MPa) and tensile strength (712-1147 MPa). Owing the stabilization of the non-ferromagnetic ε- and γ-phase, it was shown that even Mn concentrations of 15-17 wt % are sufficient to distinctly enhance the magnetic resonance imaging (MRI) compatibility of FeMn alloys.

20.
Sci Rep ; 8(1): 278, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321540

RESUMO

We present a comprehensive study of a magnetic sensor system that benefits from a new technique to substantially increase the magnetoelastic coupling of surface acoustic waves (SAW). The device uses shear horizontal acoustic surface waves that are guided by a fused silica layer with an amorphous magnetostrictive FeCoSiB thin film on top. The velocity of these so-called Love waves follows the magnetoelastically-induced changes of the shear modulus according to the magnetic field present. The SAW sensor is operated in a delay line configuration at approximately 150 MHz and translates the magnetic field to a time delay and a related phase shift. The fundamentals of this sensor concept are motivated by magnetic and mechanical simulations. They are experimentally verified using customized low-noise readout electronics. With an extremely low magnetic noise level of ≈100 pT/[Formula: see text], a bandwidth of 50 kHz and a dynamic range of 120 dB, this magnetic field sensor system shows outstanding characteristics. A range of additional measures to further increase the sensitivity are investigated with simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...