Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Eur Neuropsychopharmacol ; 29(1): 156-170, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30503783

RESUMO

Genome-wide association studies of case-control status have advanced the understanding of the genetic basis of psychiatric disorders. Further progress may be gained by increasing sample size but also by new analysis strategies that advance the exploitation of existing data, especially for clinically important quantitative phenotypes. The functionally-informed efficient region-based test strategy (FIERS) introduced herein uses prior knowledge on biological function and dependence of genotypes within a powerful statistical framework with improved sensitivity and specificity for detecting consistent genetic effects across studies. As proof of concept, FIERS was used for the first genome-wide single nucleotide polymorphism (SNP)-based investigation on bipolar disorder (BD) that focuses on an important aspect of disease course, the functional outcome. FIERS identified a significantly associated locus on chromosome 15 (hg38: chr15:48965004 - 49464789 bp) with consistent effect strength between two independent studies (GAIN/TGen: European Americans, BOMA: Germans; n = 1592 BD patients in total). Protective and risk haplotypes were found on the most strongly associated SNPs. They contain a CTCF binding site (rs586758); CTCF sites are known to regulate sets of genes within a chromatin domain. The rs586758 - rs2086256 - rs1904317 haplotype is located in the promoter flanking region of the COPS2 gene, close to microRNA4716, and the EID1, SHC4, DTWD1 genes as plausible biological candidates. While implication with BD is novel, COPS2, EID1, and SHC4 are known to be relevant for neuronal differentiation and function and DTWD1 for psychopharmacological side effects. The test strategy FIERS that enabled this discovery is equally applicable for tag SNPs and sequence data.


Assuntos
Transtorno Bipolar/diagnóstico , Transtorno Bipolar/genética , Predisposição Genética para Doença/genética , Adolescente , Adulto , Idoso , Transtorno Bipolar/fisiopatologia , Transtorno Bipolar/psicologia , Estudos de Casos e Controles , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos , Humanos , Desequilíbrio de Ligação/genética , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Polimorfismo de Nucleotídeo Único/genética , Prognóstico , Escalas de Graduação Psiquiátrica , População Branca/genética , Adulto Jovem
3.
Cell ; 166(2): 492-505, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27419873

RESUMO

The epigenome orchestrates genome accessibility, functionality, and three-dimensional structure. Because epigenetic variation can impact transcription and thus phenotypes, it may contribute to adaptation. Here, we report 1,107 high-quality single-base resolution methylomes and 1,203 transcriptomes from the 1001 Genomes collection of Arabidopsis thaliana. Although the genetic basis of methylation variation is highly complex, geographic origin is a major predictor of genome-wide DNA methylation levels and of altered gene expression caused by epialleles. Comparison to cistrome and epicistrome datasets identifies associations between transcription factor binding sites, methylation, nucleotide variation, and co-expression modules. Physical maps for nine of the most diverse genomes reveal how transposons and other structural variants shape the epigenome, with dramatic effects on immunity genes. The 1001 Epigenomes Project provides a comprehensive resource for understanding how variation in DNA methylation contributes to molecular and non-molecular phenotypes in natural populations of the most studied model plant.


Assuntos
Arabidopsis/genética , Epigênese Genética , Metilação de DNA , Epigenômica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Transcriptoma
4.
Hum Hered ; 77(1-4): 73-86, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25060271

RESUMO

All human populations exhibit some level of genetic differentiation. This differentiation, or population stratification, has many interacting sources, including historical migrations, population isolation over time, genetic drift, and selection and adaptation. If differentiated populations remained isolated from each other over a long period of time such that there is no mating of individuals between those populations, then some level of global consanguinity within those populations will lead to the formation of gene pools that will become more and more distinct over time. Global genetic differentiation of this sort can lead to overt phenotypic differences between populations if phenotypically relevant variants either arise uniquely within those populations or begin to exhibit frequency differences across the populations. This can occur at the single variant level for monogenic phenotypes or at the level of aggregate variant frequency differences across the many loci that contribute to a phenotype with a multifactorial or polygenic basis. However, if individuals begin to interbreed (or 'admix') from populations with different frequencies of phenotypically relevant genetic variants, then these admixed individuals will exhibit the phenotype to varying degrees. The level of phenotypic expression will depend on the degree to which the admixed individuals have inherited causative variants that have descended from the ancestral population in which those variants were present (or, more likely, simply more frequent). We review studies that consider the association between the degree of admixture (or ancestry) and phenotypes of clinical relevance. We find a great deal of literature-based evidence for associations between the degree of admixture and phenotypic variation for a number of admixed populations and phenotypes, although not all this evidence is confirmatory. We also consider the implications of such associations for gene-mapping initiatives as well as general clinical epidemiology studies and medical practice. We end with some thoughts on the future of studies exploring phenotypic differences among admixed individuals as well as individuals with different ancestral backgrounds.


Assuntos
Doenças Genéticas Inatas/epidemiologia , Variação Genética , Genética Populacional/métodos , Fenótipo , Isolamento Reprodutivo , Doenças Genéticas Inatas/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...