Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(5): e0154770, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27138223

RESUMO

Apoptosis is a highly conserved biochemical mechanism which is tightly controlled in cells. It contributes to maintenance of tissue homeostasis and normally eliminates highly proliferative cells with malignant properties. Induced pluripotent stem cells (iPSCs) have recently been described with significant functional and morphological similarities to embryonic stem cells. Human iPSCs are of great hope for regenerative medicine due to their broad potential to differentiate into specialized cell types in culture. They may be useful for exploring disease mechanisms and may provide the basis for future cell-based replacement therapies. However, there is only poor insight into iPSCs cell signaling as the regulation of apoptosis. In this study, we focused our attention on the apoptotic response of Alzheimer fibroblast-derived iPSCs and two other Alzheimer free iPSCs to five biologically relevant kinase inhibitors as well as to the death ligand TRAIL. To our knowledge, we are the first to report that the relatively high basal apoptotic rate of iPSCs is strongly suppressed by the pancaspase inhibitor QVD-Oph, thus underlining the dependency on proapoptotic caspase cascades. Furthermore, wortmannin, an inhibitor of phosphoinositid-3 kinase / Akt signaling (PI3K-AKT), dramatically and rapidly induced apoptosis in iPSCs. In contrast, parental fibroblasts as well as iPSC-derived neuronal cells were not responsive. The resulting condensation and fragmentation of DNA and decrease of the membrane potential are typical features of apoptosis. Comparable effects were observed with an AKT inhibitor (MK-2206). Wortmannin resulted in disappearance of phosphorylated AKT and activation of the main effector caspase-3 in iPSCs. These results clearly demonstrate for the first time that PI3K-AKT represents a highly essential survival signaling pathway in iPSCs. The findings provide improved understanding on the underlying mechanisms of apoptosis regulation in iPSCs.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Androstadienos/farmacologia , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/citologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Wortmanina
2.
Mol Carcinog ; 53(8): 635-47, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23625515

RESUMO

An understanding of signaling pathways is a basic requirement for the treatment of melanoma. Currently, kinases are at the center of melanoma therapies. According to our research, additional alternative molecules are equally important for development of melanoma. In this regard, cancer progression is, among other factors, driven by an altered adhesion via cadherins. For instance, the de-regulated expression of the adhesion molecule T-cadherin is found in various cancer types, including melanoma, and influences migration and invasion. T-cadherin is thought to affect cellular function largely through its signaling and not its adhesion properties because the molecule is anchored into the cell membrane by a glycosylphosphatidylinositol (GPI) moiety. However, detailed knowledge about the consequences of the loss of T-cadherin in melanoma is currently lacking. For this reason, we were interested in assessing which signaling pathways are initiated by T-cadherin. The tumor growth of subcutaneously injected T-cadherin-positive melanoma cells was diminished compared with T-cadherin-negative cells in nude mice. The difference in tumor volume was not due to decreased proliferation but rather due to increased apoptosis. After the expression of T-cadherin was induced, we detected V-AKT murine thymoma viral oncogene homolog (AKT) and FoxO3a hypophosphorylation accompanied by the downregulation of the antiapoptotic molecules BCL-2, BCL-x and Clusterin. Furthermore, we detected a diminished transcriptional activity of CREB and AP-1. We demonstrated that T-cadherin functions as a pro-apoptotic tumor suppressor that antagonizes AKT/CREB/AP-1/FoxO3a signaling, whereas NFκB, TCF/LEF and mTOR are not part of the T-cadherin signaling pathway. Notably, we found that the restoration of T-cadherin in melanoma cells causes sensitization to apoptosis induced by CD95/Fas antibody CH-11.


Assuntos
Apoptose , Caderinas/metabolismo , Proliferação de Células , Melanoma/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Western Blotting , Caderinas/antagonistas & inibidores , Caderinas/genética , Ensaio de Desvio de Mobilidade Eletroforética , Ensaio de Imunoadsorção Enzimática , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Masculino , Melanoma/genética , Melanoma/metabolismo , Camundongos , Camundongos Nus , Neovascularização Patológica , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...