Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AoB Plants ; 15(6): plad074, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38130422

RESUMO

High-throughput sequencing of herbarium specimens' DNA with short-read platforms has helped explore many biological questions. Here, for the first time, we investigate the potential of using herbarium specimens as a resource for long-read DNA sequencing technologies. We use target capture of 48 low-copy nuclear loci in 12 herbarium specimens of Silene as a basis for long-read sequencing using SMRT PacBio Sequel. The samples were collected between 1932 and 2019. A simple optimization of size selection protocol enabled the retrieval of both long DNA fragments (>1 kb) and long on-target reads for nine of them. The limited sampling size does not enable statistical evaluation of the influence of specimen age to the DNA fragmentation, but our results confirm that younger samples, that is, collected after 1990, are less fragmented and have better sequencing success than specimens collected before this date. Specimens collected between 1990 and 2019 yield between 167 and 3403 on-target reads > 1 kb. They enabled recovering between 34 loci and 48 (i.e. all loci recovered). Three samples from specimens collected before 1990 did not yield on-target reads > 1 kb. The four other samples collected before this date yielded up to 144 reads and recovered up to 25 loci. Young herbarium specimens seem promising for long-read sequencing. However, older ones have partly failed. Further exploration would be necessary to statistically test and understand the potential of older material in the quest for long reads. We would encourage greatly expanding the sampling size and comparing different taxonomic groups.

2.
PLoS One ; 15(5): e0233597, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32453786

RESUMO

While biodiversity hotspots are typically identified on the basis of species number per unit area, their exceptional richness is often attributed, either implicitly or explicitly, to high diversification rates. High species concentrations, however, need not reflect rapid diversification, with the diversity of some hotspots accumulating at modest rates over long timespans. Here we explore the relationship between diversification in time vs. diversification in space and develop the concept of diversification density to describe the spatial scale of species accumulation in a clade. We investigate how plant height is associated with both aspects of diversification in Alooideae, a large plant subfamily with its center of diversity in the Greater Cape Floristic Region. We first reconstruct a time-calibrated phylogeny for Alooideae and demonstrate an evolutionary tendency towards reduced plant height. While plant height does not correlate with diversification rate across Alooideae it does so with diversification per unit space: clades of small plants tend to have the highest diversification densities. Furthermore, we find that diversification in time vs. space are uncorrelated. Our results show that diversification rate and density can be decoupled, and suggest that while some biodiversity hotspots might have been generated by high diversification rates, others are the product of high diversification density.


Assuntos
Biodiversidade , Evolução Biológica , Plantas/genética , Traqueófitas/genética , Especiação Genética , Filogenia , Plantas/classificação , Traqueófitas/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...