Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sci Data ; 10(1): 361, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280226

RESUMO

While the amount of studies involving single-cell or single-nucleus RNA-sequencing technologies grows exponentially within the biomedical research area, the kidney field requires reference transcriptomic signatures to allocate each cluster its matching cell type. The present meta-analysis of 39 previously published datasets, from 7 independent studies, involving healthy human adult kidney samples, offers a set of 24 distinct consensus kidney cell type signatures. The use of these signatures may help to assure the reliability of cell type identification in future studies involving single-cell and single-nucleus transcriptomics while improving the reproducibility in cell type allocation.


Assuntos
Rim , Transcriptoma , Adulto , Humanos , Perfilação da Expressão Gênica , Reprodutibilidade dos Testes , Análise da Expressão Gênica de Célula Única , Conjuntos de Dados como Assunto
2.
Hum Mol Genet ; 31(13): 2121-2136, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35043953

RESUMO

Renal ciliopathies are the leading cause of inherited kidney failure. In autosomal dominant polycystic kidney disease (ADPKD), mutations in the ciliary gene PKD1 lead to the induction of CCL2, which promotes macrophage infiltration in the kidney. Whether or not mutations in genes involved in other renal ciliopathies also lead to immune cells recruitment is controversial. Through the parallel analysis of patients' derived material and murine models, we investigated the inflammatory components of nephronophthisis (NPH), a rare renal ciliopathy affecting children and adults. Our results show that NPH mutations lead to kidney infiltration by neutrophils, macrophages and T cells. Contrary to ADPKD, this immune cell recruitment does not rely on the induction of CCL2 in mutated cells, which is dispensable for disease progression. Through an unbiased approach, we identified a set of inflammatory cytokines that are upregulated precociously and independently of CCL2 in murine models of NPH. The majority of these transcripts is also upregulated in NPH patient renal cells at a level exceeding those found in common non-immune chronic kidney diseases. This study reveals that inflammation is a central aspect in NPH and delineates a specific set of inflammatory mediators that likely regulates immune cell recruitment in response to NPH genes mutations.


Assuntos
Ciliopatias , Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Adulto , Animais , Criança , Ciliopatias/genética , Fibrose , Humanos , Rim , Camundongos , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/genética
3.
Pulm Circ ; 11(3): 20458940211021301, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178305

RESUMO

In left heart failure, iron supplementation (IS) is a first-line treatment option, regardless of anemia. Pulmonary arterial hypertension (PAH), a rare disease leading to right heart failure, is also associated with iron deficiency. While it is a much debated topic, recent evidence demonstrate that restoration of iron stores results in improved right ventricular function and exercise tolerance. Hence, IS may also be considered as an option in the treatment of PAH.

4.
Cells ; 10(2)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672218

RESUMO

Pulmonary arterial hypertension (PAH) is a severe cardiovascular disease that is caused by the progressive occlusion of the distal pulmonary arteries, eventually leading to right heart failure and death. Almost 40% of patients with PAH are iron deficient. Although widely studied, the mechanisms linking between PAH and iron deficiency remain unclear. Here we review the mechanisms regulating iron homeostasis and the preclinical and clinical data available on iron deficiency in PAH. Then we discuss the potential implications of iron deficiency on the development and management of PAH.


Assuntos
Deficiências de Ferro , Hipertensão Arterial Pulmonar/metabolismo , Animais , Ensaios Clínicos como Assunto , Homeostase , Humanos , Ferro/metabolismo , Modelos Biológicos , Hipertensão Arterial Pulmonar/fisiopatologia , Transdução de Sinais
5.
Pulm Circ ; 10(4): 2045894020907884, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33149891

RESUMO

Trichloroethylene exposure is a major risk factor for pulmonary veno-occlusive disease. We demonstrated that trichloroethylene alters the endothelial barrier integrity, at least in part, through vascular endothelial (VE)-Cadherin internalisation, and suggested that this mechanism may play a role in the development of pulmonary veno-occlusive disease.

6.
Int J Mol Sci ; 21(19)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036472

RESUMO

The physiopathology of pulmonary arterial hypertension (PAH) is characterized by pulmonary artery smooth muscle cell (PASMC) and endothelial cell (PAEC) dysfunction, contributing to pulmonary arterial obstruction and PAH progression. KCNK3 loss of function mutations are responsible for the first channelopathy identified in PAH. Loss of KCNK3 function/expression is a hallmark of PAH. However, the molecular mechanisms involved in KCNK3 dysfunction are mostly unknown. To identify the pathological molecular mechanisms downstream of KCNK3 in human PASMCs (hPASMCs) and human PAECs (hPAECs), we used a Liquid Chromatography-Tandem Mass Spectrometry-based proteomic approach to identify the molecular pathways regulated by KCNK3. KCNK3 loss of expression was induced in control hPASMCs or hPAECs by specific siRNA targeting KCNK3. We found that the loss of KCNK3 expression in hPAECs and hPASMCs leads to 326 and 222 proteins differentially expressed, respectively. Among them, 53 proteins were common to hPAECs and hPASMCs. The specific proteome remodeling in hPAECs in absence of KCNK3 was mostly related to the activation of glycolysis, the superpathway of methionine degradation, and the mTOR signaling pathways, and to a reduction in EIF2 signaling pathways. In hPASMCs, we found an activation of the PI3K/AKT signaling pathways and a reduction in EIF2 signaling and the Purine Nucleotides De Novo Biosynthesis II and IL-8 signaling pathways. Common to hPAECs and hPASMCs, we found that the loss of KCNK3 expression leads to the activation of the NRF2-mediated oxidative stress response and a reduction in the interferon pathway. In the hPAECs and hPASMCs, we found an increased expression of HO-1 (heme oxygenase-1) and a decreased IFIT3 (interferon-induced proteins with tetratricopeptide repeats 3) (confirmed by Western blotting), allowing us to identify these axes to understand the consequences of KCNK3 dysfunction. Our experiments, based on the loss of KCNK3 expression by a specific siRNA strategy in control hPAECs and hPASMCs, allow us to identify differences in the activation of several signaling pathways, indicating the key role played by KCNK3 dysfunction in the development of PAH. Altogether, these results allow us to better understand the consequences of KCNK3 dysfunction and suggest that KCNK3 loss of expression acts in favor of the proliferation and migration of hPASMCs and promotes the metabolic shift and apoptosis resistance of hPAECs.


Assuntos
Células Endoteliais/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Proteoma , Proteômica , Artéria Pulmonar , Transdução de Sinais , Biomarcadores , Células Cultivadas , Biologia Computacional/métodos , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Anotação de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Canais de Potássio de Domínios Poros em Tandem/genética , Proteômica/métodos , Artéria Pulmonar/citologia , Artéria Pulmonar/metabolismo
7.
Anal Chem ; 92(17): 12079-12087, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32786503

RESUMO

Pulmonary arterial hypertension (PAH) is a rare and deadly disease affecting roughly 15-60 people per million in Europe with a poorly understood pathology. There are currently no diagnostic tools for early detection nor does a curative treatment exist. The lipid composition of arteries in lung tissue samples from human PAH and control patients were investigated using matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) combined with time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging. Using random forests as an IMS data analysis technique, it was possible to identify the ion at m/z 885.6 as a marker of PAH in human lung tissue. The m/z 885.6 ion intensity was shown to be significantly higher around diseased arteries and was confirmed to be a diacylglycerophosphoinositol PI(C18:0/C20:4) via MS/MS using a novel hybrid SIMS instrument. The discovery of a potential biomarker opens up new research avenues which may finally lead to a better understanding of the PAH pathology and highlights the vital role IMS can play in modern biomedical research.


Assuntos
Hipertensão Arterial Pulmonar/diagnóstico por imagem , Hipertensão Arterial Pulmonar/diagnóstico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massa de Íon Secundário/métodos , Humanos , Hipertensão Arterial Pulmonar/patologia
8.
Am J Physiol Lung Cell Mol Physiol ; 316(3): L445-L455, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30543306

RESUMO

In this study, we explored the complex interactions between platelet-derived growth factor (PDGF) and N-methyl-d-aspartate receptor (NMDAR) and their effect on the excessive proliferation and migration of smooth muscle cells leading to obstructed arteries in pulmonary arterial hypertension (PAH). We report lower expression of glutamate receptor NMDA-type subunit 2B (GluN2B), a subunit composing NMDARs expected to affect cell survival/proliferation of pulmonary artery smooth muscle cells (PASMCs), in PAH patient lungs. PASMC exposure to PDGF-BB stimulated immediate increased levels of phosphorylated Src family kinases (SFKs) together with increased phosphorylated GluN2B (its active form) and cell surface relocalization, suggesting a cross talk between PDGFR-recruited SFKs and NMDAR. Selective inhibition of PDGFR-ß or SFKs with imatinib or A-419259, respectively, on one hand, or with specific small-interfering RNAs (siRNAs) on the other hand, aborted PDGF-induced phosphorylation of GluN2B, thus validating the pathway. Selective inhibition of GluN2B using Rö25-6981 and silencing with specific siRNA, in the presence of PDGF-BB, significantly increased both migration and proliferation of PASMCs, thus strengthening the functional importance of the pathway. Together, these results indicate that GluN2B-type NMDAR activation may confer to PASMCs antiproliferative and antimigratory properties. The decreased levels of GluN2B observed in PAH pulmonary arteries could mediate the excessive proliferation of PASMCs, thus contributing to medial hyperplasia and PAH development.


Assuntos
Miócitos de Músculo Liso/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Adulto , Idoso , Hipertensão Pulmonar Primária Familiar/metabolismo , Humanos , Hipertensão Pulmonar/metabolismo , Pessoa de Meia-Idade , Músculo Liso Vascular/metabolismo , Artéria Pulmonar/metabolismo
9.
Circulation ; 137(22): 2371-2389, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29444988

RESUMO

BACKGROUND: Excessive proliferation and apoptosis resistance in pulmonary vascular cells underlie vascular remodeling in pulmonary arterial hypertension (PAH). Specific treatments for PAH exist, mostly targeting endothelial dysfunction, but high pulmonary arterial pressure still causes heart failure and death. Pulmonary vascular remodeling may be driven by metabolic reprogramming of vascular cells to increase glutaminolysis and glutamate production. The N-methyl-d-aspartate receptor (NMDAR), a major neuronal glutamate receptor, is also expressed on vascular cells, but its role in PAH is unknown. METHODS: We assessed the status of the glutamate-NMDAR axis in the pulmonary arteries of patients with PAH and controls through mass spectrometry imaging, Western blotting, and immunohistochemistry. We measured the glutamate release from cultured pulmonary vascular cells using enzymatic assays and analyzed NMDAR regulation/phosphorylation through Western blot experiments. The effect of NMDAR blockade on human pulmonary arterial smooth muscle cell proliferation was determined using a BrdU incorporation assay. We assessed the role of NMDARs in vascular remodeling associated to pulmonary hypertension, in both smooth muscle-specific NMDAR knockout mice exposed to chronic hypoxia and the monocrotaline rat model of pulmonary hypertension using NMDAR blockers. RESULTS: We report glutamate accumulation, upregulation of the NMDAR, and NMDAR engagement reflected by increases in GluN1-subunit phosphorylation in the pulmonary arteries of human patients with PAH. Kv channel inhibition and type A-selective endothelin receptor activation amplified calcium-dependent glutamate release from human pulmonary arterial smooth muscle cell, and type A-selective endothelin receptor and platelet-derived growth factor receptor activation led to NMDAR engagement, highlighting crosstalk between the glutamate-NMDAR axis and major PAH-associated pathways. The platelet-derived growth factor-BB-induced proliferation of human pulmonary arterial smooth muscle cells involved NMDAR activation and phosphorylated GluN1 subunit localization to cell-cell contacts, consistent with glutamatergic communication between proliferating human pulmonary arterial smooth muscle cells via NMDARs. Smooth-muscle NMDAR deficiency in mice attenuated the vascular remodeling triggered by chronic hypoxia, highlighting the role of vascular NMDARs in pulmonary hypertension. Pharmacological NMDAR blockade in the monocrotaline rat model of pulmonary hypertension had beneficial effects on cardiac and vascular remodeling, decreasing endothelial dysfunction, cell proliferation, and apoptosis resistance while disrupting the glutamate-NMDAR pathway in pulmonary arteries. CONCLUSIONS: These results reveal a dysregulation of the glutamate-NMDAR axis in the pulmonary arteries of patients with PAH and identify vascular NMDARs as targets for antiremodeling treatments in PAH.


Assuntos
Ácido Glutâmico/metabolismo , Hipertensão Pulmonar/patologia , Receptores de N-Metil-D-Aspartato/metabolismo , Remodelação Vascular , Animais , Apoptose/efeitos dos fármacos , Cálcio/farmacologia , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Maleato de Dizocilpina/farmacologia , Endotelina-1/farmacologia , Humanos , Hipertensão Pulmonar/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Knockout , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Ratos , Receptores de Endotelina/química , Receptores de Endotelina/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/genética , Transdução de Sinais/efeitos dos fármacos , Remodelação Vascular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...