Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 2964, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34016980

RESUMO

Knowledge of the structure of amorphous solids can direct, for example, the optimization of pharmaceutical formulations, but atomic-level structure determination in amorphous molecular solids has so far not been possible. Solid-state nuclear magnetic resonance (NMR) is among the most popular methods to characterize amorphous materials, and molecular dynamics (MD) simulations can help describe the structure of disordered materials. However, directly relating MD to NMR experiments in molecular solids has been out of reach until now because of the large size of these simulations. Here, using a machine learning model of chemical shifts, we determine the atomic-level structure of the hydrated amorphous drug AZD5718 by combining dynamic nuclear polarization-enhanced solid-state NMR experiments with predicted chemical shifts for MD simulations of large systems. From these amorphous structures we then identify H-bonding motifs and relate them to local intermolecular complex formation energies.


Assuntos
Química Farmacêutica/métodos , Espectroscopia de Ressonância Magnética , Pirazóis/química , Cristalografia/métodos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Estrutura Molecular
2.
ACS Nano ; 15(4): 6684-6698, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33769805

RESUMO

Ideal controlled pulmonary drug delivery systems provide sustained release by retarding lung clearance mechanisms and efficient lung deposition to maintain therapeutic concentrations over prolonged time. Here, we use atomic layer deposition (ALD) to simultaneously tailor the release and aerosolization properties of inhaled drug particles without the need for lactose carrier. In particular, we deposit uniform nanoscale oxide ceramic films, such as Al2O3, TiO2, and SiO2, on micronized budesonide particles, a common active pharmaceutical ingredient for the treatment of respiratory diseases. In vitro dissolution and ex vivo isolated perfused rat lung tests demonstrate dramatically slowed release with increasing nanofilm thickness, regardless of the nature of the material. Ex situ transmission electron microscopy at various stages during dissolution unravels mostly intact nanofilms, suggesting that the release mechanism mainly involves the transport of dissolution media through the ALD films. Furthermore, in vitro aerosolization testing by fast screening impactor shows a ∼2-fold increase in fine particle fraction (FPF) for each ALD-coated budesonide formulation after 10 ALD process cycles, also applying very low patient inspiratory pressures. The higher FPFs after the ALD process are attributed to the reduction in the interparticle force arising from the ceramic surfaces, as evidenced by atomic force microscopy measurements. Finally, cell viability, cytokine release, and tissue morphology analyses verify a safe and efficacious use of ALD-coated budesonide particles at the cellular level. Therefore, surface nanoengineering by ALD is highly promising in providing the next generation of inhaled formulations with tailored characteristics of drug release and lung deposition, thereby enhancing controlled pulmonary delivery opportunities.


Assuntos
Budesonida , Dióxido de Silício , Administração por Inalação , Aerossóis , Humanos , Lactose , Pulmão , Tamanho da Partícula , Pós
3.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 2): 275-284, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32831230

RESUMO

The crystal structure of diaquabis(omeprazolate)magnesium dihydrate (DABOMD) in the solid state has been determined using single-crystal X-ray diffraction. Single crystals of DABOMD were obtained by slow crystallization in ethanol with water used as an antisolvent. The crystal structure shows a dihydrated salt comprising a magnesium cation coordinating two omeprazolate anions and two water molecules (W1) that are strongly bound to magnesium. In addition, two further water molecules (W2) are more weakly hydrogen-bonded to the pyridine nitrogen atom of each omeprazolate anion. The crystal structure was utilized to estimate key material properties for DABOMD, including crystal habit and mechanical properties, which are required for improved understanding and prediction of the behaviour of particles during pharmaceutical processing such as milling. The results from the material properties calculations indicate that DABOMD exhibits a hexagonal morphology and consists of a flat slip plane through the (100) face. It can be classed as a soft material based on elastic constant calculation and exhibits a two-dimensional hydrogen-bonding framework. Based on the crystal structure, habit and mechanical properties, it is anticipated that DABOMD will experience large disorder accompanied by plastic deformation during milling.

4.
ACS Appl Bio Mater ; 2(4): 1518-1530, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35026925

RESUMO

The morphology, size, and surface properties of pharmaceutical particles form an essential role in the therapeutic performance of active pharmaceutical ingredients (APIs) and excipients as constituents in various drug delivery systems and clinical applications. Recent advances in methods for surface modification, however, rely heavily on liquid-phase-based modification processes and afford limited control over the thickness and conformality of the coating. Atomic layer deposition (ALD), on the other hand, enables the formation of conformal nanoscale films on complex structures with thickness control on the molecular level, while maintaining the substrate particle size and morphology. Moreover, this enables nanoengineering of surfaces of pharmaceutical particles also in the dry state. Successful nanoengineeering of crystal and amorphous surfaces of pharmaceutical particles is demonstrated in this study whereby functional properties, such as dissolution and dispersibility, were tailored for drug delivery applications. This expands on our initial work on ALD of alumina on pharmaceutical particles within the lower micro- to higher nanosize ranges to here probe both crystalline and amorphous lactose substrate surfaces (d50 = 3.5 and 21 µm). In addition, both water and ozone coreactants were evaluated, the latter having not been evaluated previously for pharmaceutical particles. The deposition process is carried out at ambient conditions in a fluidized bed reactor for a low number of cycles (i.e., from 4 to 14). Improved dissolution and extended release were achieved by the ALD nanoengineering of both crystalline and amorphous surfaces. This novel concept opens up exciting opportunities to produce more complex materials and structures using temperature- and moisture-sensitive drugs, e.g., targeting and drug delivery opportunities, as well as delivering new functionalities for novel applications in the pharmaceutical, medical, biological, and advanced materials fields. The prospects for advancing inhaled drug delivery are exemplified by the ALD surface nanoengineering concept.

5.
Dalton Trans ; (28): 3466-77, 2006 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16832497

RESUMO

Reduction of [M(CO)2(eta-RC[triple bond]CR')Tp']X {Tp' = hydrotris(3,5-dimethylpyrazolyl)borate, M = Mo, X = [PF6]-, R = R' = Ph, C6H4OMe-4 or Me; R = Ph, R' = H; M = W, X = [BF4]-, R = R' = Ph or Me; R = Ph, R' = H} with [Co(eta-C5H5)2] gave paramagnetic [M(CO)2(eta-RC[triple bond]CR')Tp'], characterised by IR and ESR spectroscopy. X-Ray structural studies on the redox pair [Mo(CO)2(eta-PhC[triple bond]CPh)Tp'] and [Mo(CO)2(eta-PhC[triple bond]CPh)Tp'][PF6] showed that oxidation is accompanied by a lengthening of the C[triple bond]C bond and shortening of the Mo-C(alkyne) bonds, consistent with removal of an electron from an orbital antibonding with respect to the Mo-alkyne bond, and with conversion of the alkyne from a three- to a four-electron donor. Reduction of [Mo(CO)(NCMe)(eta-MeC[triple bond]CMe)Tp'][PF6] with [Co(eta-C5H5)2] in CH2Cl2 gives [MoCl(CO)(eta-MeC[triple bond]CMe)Tp'], via nitrile substitution in [Mo(CO)(NCMe)(eta-MeC[triple bond]CMe)Tp'], whereas a similar reaction with [M(CO){P(OCH2)3CEt}(eta-MeC[triple bond]CMe)Tp']+ (M = Mo or W) gives the phosphite-containing radicals [M(CO){P(OCH2)3CEt}(eta-MeC[triple bond]CMe)Tp']. ESR spectroscopic studies and DFT calculations on [M(CO)L(eta-MeC[triple bond]CMe)Tp'] {M = Mo or W, L = CO or P(OCH2)3CEt} show the SOMO of the neutral d5 species (the LUMO of the d4 cations) to be largely d(yz) in character although much more delocalised in the W complexes. Non-coincidence effects between the g and metal hyperfine matrices in the Mo spectra indicate hybridisation of the metal d-orbitals in the SOMO, consistent with a rotation of the coordinated alkyne about the M-C2 axis.

6.
Acta Crystallogr C ; 61(Pt 3): o143-4, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15750238

RESUMO

The title compound, C21H25NO, is a member of a well known family of liquid crystals (4-oxy-4'-cyanobiphenyls, OCBs) and packs in lamellar-type bilayers in the solid state, through CN...H hydrogen bonds. This packing type is analogous to that found of other members of the n-OCB homologous series, viz. 7-OCB and 9-OCB.

7.
Acta Crystallogr C ; 58(Pt 3): m160-1, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11870288

RESUMO

Crystals of the title compound, [NiCl(C(18)H(15)P)(2)], contain one molecule per asymmetric unit with no short intermolecular interactions. This is noteworthy since previous studies have reported that the formally 15-electron species oligomerizes in the solid state. The nickel(I) centre has a distorted trigonal-planar coordination geometry, the origin of which is suggested to be electronic in nature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...