Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Imaging Biol ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890241

RESUMO

Photodynamic therapy (PDT) is a light-based anticancer therapy that can induce tumor necrosis and/or apoptosis. Two important factors contributing to the efficacy of PDT are the concentration of the photosensitizer in the tumor tissue and its preferential accumulation in the tumor tissue compared to that in normal tissues. In this study, we investigated the use of optical imaging for monitoring whole-body bio-distribution of the fluorescent (660 nm) photosensitizer Bremachlorin in vivo, in a murine pancreatic ductal adenocarcinoma (PDAC) model. Moreover, we non-invasively, examined the induction of tumor necrosis after PDT treatment using near-infrared fluorescent imaging of the necrosis avid cyanine dye IRDye®-800CW Carboxylate. Using whole-body fluorescence imaging, we observed that Bremachlorin preferentially accumulated in pancreatic tumors. Furthermore, in a longitudinal study we showed that 3 hours after Bremachlorin administration, the fluorescent tumor signal reached its maximum. In addition, the tumor-to-background ratio at all-time points was approximately 1.4. Ex vivo, at 6 hours after Bremachlorin administration, the tumor-to-muscle or -normal pancreas ratio exhibited a greater difference than it did at 24 hours, suggesting that, in terms of efficacy, 6 hours after Bremachlorin administration was an effective time point for PDT treatment of PDAC. In vivo administration of the near infrared fluorescence agent IRDye®-800CW Carboxylate showed that PDT, 6 hours after administration of Bremachlorin, selectively induced necrosis in the tumor tissues, which was subsequently confirmed histologically. In conclusion, by using in vivo fluorescence imaging, we could non-invasively and longitudinally monitor, the whole-body distribution of Bremachlorin. Furthermore, we successfully used IRDye®-800CW Carboxylate, a near-infrared fluorescent necrosis avid agent, to image PDT-induced necrotic cell death as a measure of therapeutic efficacy. This study showed how fluorescence can be applied for optimizing, and assessing the efficacy of, PDT.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38299562

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis of sensitive cancer cells, including colorectal cancer (CRC). Due to its short biological half-life after intravenous administration and related clinical ineffectiveness, novel formulations of TRAIL need to be developed. Here we propose Lactococcus lactis bacteria as a vehicle for local delivery of human soluble TRAIL (hsTRAIL) in CRC. The use of common probiotics targeting guts as carriers for TRAIL could ensure its sustained release at the tumor site and extend the duration of its activity. We have already engineered hsTRAIL-secreting L.lactis bacteria and showed their effectiveness in elimination of human CRC cells in vitro and in vivo in a mouse subcutaneous model. Here, L.lactis(hsTRAIL+) were administered by gastric gavage to SCID mice with orthotopically developed HCT116 tumor in cecum, in monotherapy or in combination with metformin (MetF), already shown to enhance the hsTRAIL anti-tumor activity in subcutaneous CRC model. Oral administration of L.lactis(hsTRAIL+) resulted in significant progression of HCT116 tumors and shortening of the colon crypts. Secretion of hsTRAIL in the colon was accompanied by infiltration of the primary tumor with M2-macrophages, while MetF promoted transient colonization of the gut by L.lactis. Our study indicates that L.lactis bacteria after oral administration enable delivery of biologically active hsTRAIL to colon, however its potential therapeutic effect in CRC treatment is abolished by its pro-tumorigenic signalling, leading to the recruitment of M2-macrophages and tumor growth promotion.


Assuntos
Neoplasias Colorretais , Lactococcus lactis , Camundongos , Animais , Humanos , Camundongos SCID , Ligantes , Apoptose , Neoplasias Colorretais/terapia
3.
Biomacromolecules ; 24(8): 3545-3556, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37449781

RESUMO

Core cross-linked polymeric micelles (CCPMs) are designed to improve the therapeutic profile of hydrophobic drugs, reduce or completely avoid protein corona formation, and offer prolonged circulation times, a prerequisite for passive or active targeting. In this study, we tuned the CCPM stability by using bifunctional or trifunctional cross-linkers and varying the cross-linkable polymer block length. For CCPMs, amphiphilic thiol-reactive polypept(o)ides of polysarcosine-block-poly(S-ethylsulfonyl-l-cysteine) [pSar-b-pCys(SO2Et)] were employed. While the pCys(SO2Et) chain lengths varied from Xn = 17 to 30, bivalent (derivatives of dihydrolipoic acid) and trivalent (sarcosine/cysteine pentapeptide) cross-linkers have been applied. Asymmetrical flow field-flow fraction (AF4) displayed the absence of aggregates in human plasma, yet for non-cross-linked PM and CCPMs cross-linked with dihydrolipoic acid at [pCys(SO2Et)]17, increasing the cross-linking density or the pCys(SO2Et) chain lengths led to stable CCPMs. Interestingly, circulation time and biodistribution in mice of non-cross-linked and bivalently cross-linked CCPMs are comparable, while the trivalent peptide cross-linkers enhance the circulation half-life from 11 to 19 h.


Assuntos
Micelas , Polímeros , Humanos , Animais , Camundongos , Distribuição Tecidual , Polímeros/química , Plasma
4.
J Cataract Refract Surg ; 48(12): 1446-1452, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36449675

RESUMO

PURPOSE: To assess the effect of ocular anatomy and intraocular lens (IOL) design on negative dysphotopsia (ND). SETTING: Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands. DESIGN: Ray-tracing study based on clinical data. METHODS: Ray-tracing simulations were performed to assess the effect of anatomical differences and differences in IOL design on the peripheral retinal illumination. To that end, eye models that incorporate clinically measured anatomical differences between eyes of patients with ND and eyes of pseudophakic controls were created. The anatomical differences included pupil size, pupil centration, and iris tilt. The simulations were performed with different IOL designs, including a simple biconvex IOL design and a more complex clinical IOL design with a convex-concave anterior surface. Both IOL designs were analyzed using a clear edge and a frosted edge. As ND is generally considered to be caused by a discontinuity in peripheral retinal illumination, this illumination profile was determined for each eye model and the severity of the discontinuity was compared between eye models. RESULTS: The peripheral retinal illumination consistently showed a more severe discontinuity in illumination with ND-specific anatomy. This difference was the least pronounced, 8%, with the frosted edge clinical IOL and the most pronounced, 18%, with the clear edge biconvex IOL. CONCLUSIONS: These results show that small differences in the ocular anatomy or IOL design affect the peripheral retinal illumination. Therewith, they can increase the severity of ND by up to 18%.


Assuntos
Lentes Intraoculares , Oftalmologia , Humanos , Retina , Iluminação , Iris
5.
Mikrochim Acta ; 189(10): 368, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-36057018

RESUMO

Upconversion nanoparticles (UCNPs) represent a group of NPs that can convert near-infrared (NIR) light into ultraviolet and visible light, thus possess deep tissue penetration power with less background fluorescence noise interference, and do not induce damage to biological tissues. Due to their unique optical properties and possibility for surface modification, UCNPs can be exploited for concomitant antigen delivery into dendritic cells (DCs) and monitoring by molecular imaging. In this study, we focus on the development of a nano-delivery platform targeting DCs for immunotherapy and simultaneous imaging. OVA 254-267 (OVA24) peptide antigen, harboring a CD8 T cell epitope, and Pam3CysSerLys4 (Pam3CSK4) adjuvant were chemically linked to the surface of UCNPs by amide condensation to stimulate DC maturation and antigen presentation. The OVA24-Pam3CSK4-UCNPs were thoroughly characterized and showed a homogeneous morphology and surface electronegativity, which promoted a good dispersion of the NPs. In vitro experiments demonstrated that OVA24-Pam3CSK4-UCNPs induced a strong immune response, including DC maturation, T cell activation, and proliferation, as well as interferon gamma (IFN-γ) production. In vivo, highly sensitive upconversion luminescence (UCL) imaging of OVA24-Pam3CSK4-UCNPs allowed tracking of UCNPs from the periphery to lymph nodes. In summary, OVA24-Pam3CSK4-UCNPs represent an effective tool for DC-based immunotherapy.


Assuntos
Nanopartículas , Células Dendríticas , Luz , Luminescência , Imagem Molecular , Nanopartículas/química
6.
Gels ; 8(8)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36005089

RESUMO

The intra-articular administration of drugs has attracted great interest in recent decades for the treatment of osteoarthritis. The use of modified drugs has also attracted interest in recent years because their intra-articular administration has demonstrated encouraging results. The objective of this work was to prepare injectable-thermosensitive hydrogels for the intra-articular administration of Etanercept (ETA), an inhibitor of tumor necrosis factor-α. Hydrogels were prepared from the physical mixture of chitosan and Pluronic F127 with ß-glycerolphosphate (BGP). Adding ß-glycerolphosphate to the system reduced the gelation time and also modified the morphology of the resulting material. In vitro studies were carried out to determine the cytocompatibility of the prepared hydrogels for the human chondrocyte line C28/I2. The in vitro release study showed that the incorporation of BGP into the system markedly modified the release of ETA. In the in vivo studies, it was verified that the hydrogels remained inside the implantation site in the joint until the end of the study. Furthermore, ETA was highly concentrated in the blood of the study mice 48 h after the loaded material was injected. Histological investigation of osteoarthritic knees showed that the material promotes cartilage recovery in osteoarthritic mice. The results demonstrate the potential of ETA-loaded injectable hydrogels for the localized treatment of joints.

7.
J Mater Chem C Mater ; 10(2): 688-695, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35127099

RESUMO

Collaborative therapy is regarded as an effective approach in increasing the therapeutic efficacy of cancer. In this work, we have proposed and validated the concept of upconversion lumienscence image guided synergy of photodynamic therapy (PDT) and radiotherapy (RT) for deep cancer, via a specially designed nanoplatform integrating near infrared (NIR) light activated luminescence upconversion and X-ray induced scintillation. Upon NIR light irradiation, the nanoplatform emits highly monochromatic red light solely for imaging the targeted cancer cells without triggering therapy; however, when the irradiation turns to a low dose of X-rays, scintillation will occur which induces effectively the PDT destroying the cancer cells together with X-ray induced RT. The novel theranostic nanoplatform is constructed in such a way that the interactions between the upconversion core and the outmost scintillating shell are blocked effectively by an inert layer between them. This structural design not only enables a nearly perfect excitation energy delivery (∼100% at a spectral overlapping wavelength of ∼540 nm) from the outermost scintellating layer to the surface-anchored photosensitizers and so a maximum yield of radical oxygen species, but also achieves a strong NIR induced upconversion luminescence for imaging. Since PDT and RT attack different parts of a cancer cell, this synergy is more effective in destroying cancer than a single therapy, resulting in the reduction of the X-ray irradiation dosage. As a proof of principle, the theranostic effect is validated by in vitro and in vivo experiments, exhibiting the great potential of this sort of nanoplatform in deep cancer treatment.

8.
Pharmaceutics ; 14(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35214015

RESUMO

Cartilage diseases currently affect a high percentage of the world's population. Almost all of these diseases, such as osteoarthritis (OA), cause inflammation of this soft tissue. However, this could be controlled with biomaterials that act as an anti-inflammatory delivery system, capable of dosing these drugs over time in a specific area. The objective of this study was to incorporate etanercept (ETA) into porous three-layer scaffolds to decrease the inflammatory process in this soft tissue. ETA is a blocker of pro-inflammatory cytokines, such as tumour necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). For this reason, the scaffold was built based on natural polymers, including chitosan and type I collagen. The scaffold was grafted next to subchondral bone using hydroxyapatite as filler. One of the biomaterials obtained was also crosslinked to compare its mechanical properties with the non-treated one. Both samples' physicochemical properties were studied with SEM, micro-CT and photoacoustic imaging, and their rheological properties were also compared. The cell viability and proliferation of the human chondrocyte C28/I2 cell line were studied in vitro. An in vitro and in vivo controlled release study was evaluated in both specimens. The ETA anti-inflammatory effect was also studied by in vitro TNF-α and IL-6 production. The crosslinked and non-treated scaffolds had rheological properties suitable for this application. They were non-cytotoxic and favoured the in vitro growth of chondrocytes. The in vitro and in vivo ETA release showed desirable results for a drug delivery system. The TNF-α and IL-6 production assay showed that this drug was effective as an anti-inflammatory agent. In an in vivo OA mice model, safranin-O and fast green staining was carried out. The OA cartilage tissue improved when the scaffold with ETA was grafted in the damaged area. These results demonstrate that this type of biomaterial has high potential for clinical applications in tissue engineering and as a controlled drug delivery system in OA articular cartilage.

9.
Gels ; 8(1)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35049579

RESUMO

Intra-articular administration of anti-inflammatory drugs is a strategy that allows localized action on damaged articular cartilage and reduces the side effects associated with systemic drug administration. The objective of this work is to prepare injectable thermosensitive hydrogels for the long-term application of dexamethasone. The hydrogels were prepared by mixing chitosan (CS) and Pluronic-F127 (PF) physically. In addition, tripolyphosphate (TPP) was used as a crosslinking agent. Chitosan added to the mix increased the gel time compared to the pluronic gel alone. The incorporation of TPP into the material modified the morphology of the hydrogels formed. Subsequently, MTS and Live/Dead® experiments were performed to investigate the toxicity of hydrogels against human chondrocytes. The in vitro releases of dexamethasone (DMT) from CS-PF and CS-PF-TPP gels had an initial burst and took more time than that from the PF hydrogel. In vivo studies showed that hydrogels retained the fluorescent compound longer in the joint than when administered in PBS alone. These results suggest that the CS-PF and CS-PF-TPP hydrogels loaded with DMT could be a promising drug delivery platform for the treatment of osteoarthritis.

10.
Cell Tissue Res ; 381(1): 55-69, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32036485

RESUMO

Traumatic brain injury (TBI) is a devastating event for which current therapies are limited. Stem cell transplantation may lead to recovery of function via different mechanisms, such as cell replacement through differentiation, stimulation of angiogenesis and support to the microenvironment. Adult hair follicle bulge-derived stem cells (HFBSCs) possess neuronal differentiation capacity, are easy to harvest and are relatively immune-privileged, which makes them potential candidates for autologous stem cell-based therapy. In this study, we apply in vivo multimodal, optical and magnetic resonance imaging techniques to investigate the behavior of mouse HFBSCs in a mouse model of TBI. HFBSCs expressed Luc2 and copGFP and were examined for their differentiation capacity in vitro. Subsequently, transduced HFBSCs, preloaded with ferumoxytol, were transplanted next to the TBI lesion (cortical region) in nude mice, 2 days after injury. Brains were fixed for immunohistochemistry 58 days after transplantation. Luc2- and copGFP-expressing, ferumoxytol-loaded HFBSCs showed adequate neuronal differentiation potential in vitro. Bioluminescence of the lesioned brain revealed survival of HFBSCs and magnetic resonance imaging identified their localization in the area of transplantation. Immunohistochemistry showed that transplanted cells stained for nestin and neurofilament protein (NF-Pan). Cells also expressed laminin and fibronectin but extracellular matrix masses were not detected. After 58 days, ferumoxytol could be detected in HFBSCs in brain tissue sections. These results show that HFBSCs are able to survive after brain transplantation and suggest that cells may undergo differentiation towards a neuronal cell lineage, which supports their potential use for cell-based therapy for TBI.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/terapia , Folículo Piloso/citologia , Transplante de Células-Tronco , Animais , Diferenciação Celular , Feminino , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Células-Tronco
11.
J Control Release ; 320: 19-31, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-31899272

RESUMO

In cancer treatment, nanomedicines may be employed in an attempt to improve the tumor localization of antineoplastic drugs e.g. immunotherapeutic agents either through passive or active targeting, thereby potentially enhancing therapeutic effect and reducing undesired off-target effects. However, a large number of administrated nanocarriers often fail to reach the tumor area. In the present study, we show that photodynamic therapy (PDT) enhances the tumor accumulation of systemically administered lipid-PEG layer coated poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NP). Intravital microscopy and histological analysis of the tumor area reveal that the tumor vasculature was disrupted after PDT, disturbing blood flow and coinciding with entrapment of nanocarriers in the tumor area. We observed that the nanoparticles accumulating after treatment do not confine to specific locations within the tumor, but rather localize to various cells present throughout the tumor area. Finally, we show by flow cytometry that NP accumulation occurred mostly in immune cells of the myeloid lineage present in the tumor microenvironment (TME) as well as in tumor cells, albeit to a lower extent. These data expose opportunities for combination treatments of clinical PDT with NP-based immunotherapy to modulate the TME and improve antitumor immune responses.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Fotoquimioterapia , Linhagem Celular Tumoral , Células Mieloides , Neoplasias/tratamento farmacológico
12.
J Tissue Eng Regen Med ; 14(2): 355-368, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31826327

RESUMO

Various tissue engineering systems for cartilage repair have been designed and tested over the past two decades, leading to the development of many promising cartilage grafts. However, no one has yet succeeded in devising an optimal system to restore damaged articular cartilage. Here, the design, assembly, and biological testing of a porous, chitosan/collagen-based scaffold as an implant to repair damaged articular cartilage is reported. Its gradient composition and trilayer structure mimic variations in natural cartilage tissue. One of its layers includes hydroxyapatite, a bioactive component that facilitates the integration of growing tissue on local bone in the target area after scaffold implantation. The scaffold was evaluated for surface morphology; rheological performance (storage, loss, complex, and time-relaxation moduli at 1 kHz); physiological stability; in vitro activity and cytotoxicity (on a human chondrocyte C28 cell line); and in vivo performance (tissue growth and biodegradability), in a murine model of osteoarthritis. The scaffold was shown to be mechanically resistant and noncytotoxic, favored tissue growth in vivo, and remained stable for 35 days postimplantation in mice. These encouraging results highlight the potential of this porous chitosan/collagen scaffold for clinical applications in cartilage tissue engineering.


Assuntos
Cartilagem Articular/cirurgia , Osteoartrite/cirurgia , Porosidade , Próteses e Implantes , Desenho de Prótese/métodos , Engenharia Tecidual/métodos , Animais , Cartilagem Articular/patologia , Sobrevivência Celular , Quitosana/química , Condrócitos/citologia , Humanos , Hidroxiapatitas/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia Eletrônica de Varredura , Polímeros/química , Reologia , Alicerces Teciduais , Microtomografia por Raio-X
13.
Biomaterials ; 230: 119637, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31776018

RESUMO

Side effect is one of the main factors affecting the success of cancer therapies in clinic. Patients treated with photodynamic therapy (PDT) suffer mainly from the phototoxicity due to the relatively long time blood circulation of the tumor enrichment and they have also to be protected from background light for days after the treatment. Here we introduce a new design of nanophotosensitizers in which the luminescence upconversion nanoparticles loaded with photosensitizers are self-assembled into a nanoball with the aid of a specific pH-sensitive polymer layer containing overloaded photosensitizers and quenching molecules. This design makes the therapy function "off/on" possible, i.e. only imaging during the circulation of the nanoballs ascribing to the near-infrared (NIR) photon upconversion of the nanoballs and the pH-sensitive shell. Activation of PDT solely occurs once the nanoballs are taken up by the cancer cells due to the acidic microenvironment. This design prevents effectively the photodamage of the photosensitizers during enrichment and targeting process of tumor, as validated in vitro and in vivo, which enables imaging-guided PDT treatment of deep-seated tumor in a much more relax and comfortable way for patients. This patient-friendly nanomaterial construction strategy can also be extended to other therapies.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Concentração de Íons de Hidrogênio , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Imagem Óptica , Fármacos Fotossensibilizantes/uso terapêutico , Microambiente Tumoral
14.
J Bone Oncol ; 15: 100222, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30766792

RESUMO

BACKGROUND: Chondrosarcomas are malignant cartilage-producing tumors showing mutations and changes in gene expression in metabolism related genes. In this study, we aimed to explore the metabolome and identify targetable metabolic vulnerabilities in chondrosarcoma. METHODS: A custom-designed metabolic compound screen containing 39 compounds targeting different metabolic pathways was performed in chondrosarcoma cell lines JJ012, SW1353 and CH2879. Based on the anti-proliferative activity, six compounds were selected for validation using real-time metabolic profiling. Two selected compounds (rapamycin and sapanisertib) were further explored for their effect on viability, apoptosis and metabolic dependency, in normoxia and hypoxia. In vivo efficacy of sapanisertib was tested in a chondrosarcoma orthotopic xenograft mouse model. RESULTS: Inhibitors of glutamine, glutathione, NAD synthesis and mTOR were effective in chondrosarcoma cells. Of the six compounds that were validated on the metabolic level, mTOR inhibitors rapamycin and sapanisertib showed the most consistent decrease in oxidative and glycolytic parameters. Chondrosarcoma cells were sensitive to mTORC1 inhibition using rapamycin. Inhibition of mTORC1 and mTORC2 using sapanisertib resulted in a dose-dependent decrease in viability in all chondrosarcoma cell lines. In addition, induction of apoptosis was observed in CH2879 after 24 h. Treatment of chondrosarcoma xenografts with sapanisertib slowed down tumor growth compared to control mice. CONCLUSIONS: mTOR inhibition leads to a reduction of oxidative and glycolytic metabolism and decreased proliferation in chondrosarcoma cell lines. Although further research is needed, these findings suggest that mTOR inhibition might be a potential therapeutic option for patients with chondrosarcoma.

15.
Biomaterials ; 201: 33-41, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30784770

RESUMO

A perfect "off" to "on" switch of the therapeutic function is very important to minimize the phototoxicity of nanoplatforms assisted imaging-guided photodynamic therapy (PDT) of cancer. Current approaches rely on preloaded photosensitizers, where the off/on state of PDT is regulated by the sensitizing light of photosensitizers. However, the photoactivities inevitably occur when imaging/diagnosis or exposure to sunlight, etc. These preloading approaches will cause the damage to normal cells and the photosensitivity to the skin. Taking upconversion photodynamic therapy as an example we report here a biorthogonal chemistry solution to circumvent this problem. The luminescence upconversion nanoparticles (UCNPs) are anchored with one handle of click reaction and targeting entity, these nanoplatforms enable the imaging/labelling/tracking, especially for imaging-guided surgery. Once they are targeted, the photosensitizers armed with the other match handle will be injected in situ and click reaction will occur between the two handles to link the photosensitizers closely with the targeted nanoplatforms in a very short time, enabling the PDT function of the nanoplatforms. Proof of principle has been demonstrated in vitro and in vivo. This approach can be readily extended to chemotherapy, radiotherapy, etc. to overcome the side effect of these therapies of cancers.


Assuntos
Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Animais , Carbonatos/química , Química Click/métodos , Citometria de Fluxo , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Polietilenoglicóis/química , Oxigênio Singlete/química , Succinimidas/química
16.
Cardiovasc Res ; 114(13): 1776-1793, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29931197

RESUMO

Aim: Thoracic aortic aneurysms are a life-threatening condition often diagnosed too late. To discover novel robust biomarkers, we aimed to better understand the molecular mechanisms underlying aneurysm formation. Methods and results: In Fibulin-4R/R mice, the extracellular matrix protein Fibulin-4 is 4-fold reduced, resulting in progressive ascending aneurysm formation and early death around 3 months of age. We performed proteomics and genomics studies on Fibulin-4R/R mouse aortas. Intriguingly, we observed alterations in mitochondrial protein composition in Fibulin-4R/R aortas. Consistently, functional studies in Fibulin-4R/R vascular smooth muscle cells (VSMCs) revealed lower oxygen consumption rates, but increased acidification rates. Yet, mitochondria in Fibulin-4R/R VSMCs showed no aberrant cytoplasmic localization. We found similar reduced mitochondrial respiration in Tgfbr-1M318R/+ VSMCs, a mouse model for Loeys-Dietz syndrome (LDS). Interestingly, also human fibroblasts from Marfan (FBN1) and LDS (TGFBR2 and SMAD3) patients showed lower oxygen consumption. While individual mitochondrial Complexes I-V activities were unaltered in Fibulin-4R/R heart and muscle, these tissues showed similar decreased oxygen consumption. Furthermore, aortas of aneurysmal Fibulin-4R/R mice displayed increased reactive oxygen species (ROS) levels. Consistent with these findings, gene expression analyses revealed dysregulation of metabolic pathways. Accordingly, blood ketone levels of Fibulin-4R/R mice were reduced and liver fatty acids were decreased, while liver glycogen was increased, indicating dysregulated metabolism at the organismal level. As predicted by gene expression analysis, the activity of PGC1α, a key regulator between mitochondrial function and organismal metabolism, was downregulated in Fibulin-4R/R VSMCs. Increased TGFß reduced PGC1α levels, indicating involvement of TGFß signalling in PGC1α regulation. Activation of PGC1α restored the decreased oxygen consumption in Fibulin-4R/R VSMCs and improved their reduced growth potential, emphasizing the importance of this key regulator. Conclusion: Our data indicate altered mitochondrial function and metabolic dysregulation, leading to increased ROS levels and altered energy production, as a novel mechanism, which may contribute to thoracic aortic aneurysm formation.


Assuntos
Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo , Metabolismo Energético , Proteínas da Matriz Extracelular/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Liso Vascular/metabolismo , Mutação , Miócitos de Músculo Liso/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Aneurisma da Aorta Torácica/patologia , Respiração Celular , Células Cultivadas , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/genética , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Musculares/patologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Espécies Reativas de Oxigênio/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Transdução de Sinais
17.
Oral Oncol ; 78: 1-7, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29496035

RESUMO

OBJECTIVES: Tumour-positive resection margins are a major problem during oral cancer surgery. gGlu-HMRG is a tracer that becomes fluorescent upon activation by gamma-glutamyltranspeptidase (GGT). This study aims to investigate the combination of gGlu-HMRG and a clinical fluorescence imaging system for the detection of tumour-positive resection margins. MATERIALS AND METHODS: The preclinical Maestro and clinical Artemis imaging systems were compared in vitro and ex vivo with cultured human head and neck cancer cells (OSC19, GGT-positive; and FaDu, GGT negative) and tumour-bearing nude mice. Subsequently, frozen sections of normal and oral cancer tissues were ex vivo sprayed with gGlu-HMRG to determine the sensitivity and specificity. Finally, resection margins of patients with suspected oral cancer were ex vivo sprayed with gGlu-HMRG to detect tumour-positive resection margins. RESULTS: Both systems could be used to detect gGlu-HMRG activation in vitro and ex vivo in GGT positive cancer cells. Sensitivity and specificity of gGlu-HMRG and the Artemis on frozen tissue samples was 80% and 87%, respectively. Seven patients undergoing surgery for suspected oral cancer were included. In three patients fluorescence was observed at the resection margin. Those margins were either tumour-positive or within 1 mm of tumour. The margins of the other patients were clear (≥8 mm). CONCLUSION: This study demonstrates the feasibility to detect tumour-positive resection margins with gGlu-HMRG and a clinical fluorescence imaging system. Applying this technique would enable intraoperative screening of the entire resection margin and allow direct re-resection in case of tumour-positivity.


Assuntos
Carcinoma de Células Escamosas/cirurgia , Corantes Fluorescentes/administração & dosagem , Margens de Excisão , Neoplasias Bucais/cirurgia , gama-Glutamiltransferase/metabolismo , Animais , Feminino , Corantes Fluorescentes/metabolismo , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
18.
ACS Nano ; 12(4): 3217-3225, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29489327

RESUMO

Photoswitchable materials are important in broad applications. Recently appeared inorganic photoswitchable upconversion nanoparticles (PUCNPs) become a competitive candidate to surmount the widespread issue of the organic counterparts -photobleaching. However, current PUCNPs follow solely Yb3+/Nd3+ cosensitizing mode, which results in complex multilayer doping patterns and imperfectness of switching in UV-blue region. In this work, we have adopted a new strategy to construct Nd3+ free PUCNPs-NaErF4@NaYF4@NaYbF4:0.5%Tm@NaYF4. These PUCNPs demonstrate the superior property of photoswitching. A prominent UV-blue emission from Tm3+ is turned on upon 980 nm excitation, which can be completely turned off by 800 nm light. The quasi-monochromatic red upconversion emission upon 800 nm excitation-a distinct feature of undoping NaErF4 upconversion system-endows the PUCNPs with promising image-guided photoinduced "off-on" therapy in biomedicine. As a proof-of-concept we have demonstrated the imaging-guided photodynamic therapy (PDT) of cancer, where 800 nm excitation turns off the UV-blue emission and leaves the emission at 660 nm for imaging. Once the tumor site is targeted, excitation switching to 980 nm results in UV-blue emission and the red emission. The former is used to induce PDT, whereas the latter is to monitor the therapeutic process. Our study implies that this upconversion photoswitching material is suitable for real-time imaging and image-guided therapy under temporal and spatial control.


Assuntos
Nanopartículas/química , Fármacos Fotossensibilizantes/química , Raios Infravermelhos , Fotoquimioterapia , Raios Ultravioleta
19.
Nat Commun ; 9(1): 132, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317625

RESUMO

The sensitivity of bioluminescence imaging in animals is primarily dependent on the amount of photons emitted by the luciferase enzyme at wavelengths greater than 620 nm where tissue penetration is high. This area of work has been dominated by firefly luciferase and its substrate, D-luciferin, due to the system's peak emission (~ 600 nm), high signal to noise ratio, and generally favorable biodistribution of D-luciferin in mice. Here we report on the development of a codon optimized mutant of click beetle red luciferase that produces substantially more light output than firefly luciferase when the two enzymes are compared in transplanted cells within the skin of black fur mice or in deep brain. The mutant enzyme utilizes two new naphthyl-luciferin substrates to produce near infrared emission (730 nm and 743 nm). The stable luminescence signal and near infrared emission enable unprecedented sensitivity and accuracy for performing deep tissue multispectral tomography in mice.


Assuntos
Benzotiazóis/metabolismo , Besouros/enzimologia , Proteínas de Insetos/metabolismo , Luciferases/metabolismo , Animais , Benzotiazóis/química , Células HEK293 , Humanos , Proteínas de Insetos/genética , Luciferases/genética , Luminescência , Medições Luminescentes/métodos , Células MCF-7 , Camundongos Endogâmicos C57BL , Camundongos Nus , Microscopia de Fluorescência , Mutação , Espectroscopia de Luz Próxima ao Infravermelho
20.
Sci Rep ; 7(1): 10269, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860634

RESUMO

Arteriovenous access dysfunction is a major cause of morbidity for hemodialysis patients. The pathophysiology of arteriovenous fistula (AVF) maturation failure is associated with inflammation, impaired outward remodeling (OR) and intimal hyperplasia. RP105 is a critical physiologic regulator of TLR4 signaling in numerous cell types. In the present study, we investigated the impact of RP105 on AVF maturation, and defined cell-specific effects of RP105 on macrophages and vascular smooth muscle cells (VSMCs). Overall, RP105-/- mice displayed a 26% decrease in venous OR. The inflammatory response in RP105-/- mice was characterized by accumulation of anti-inflammatory macrophages, a 76% decrease in pro- inflammatory macrophages, a 70% reduction in T-cells and a 50% decrease in MMP-activity. In vitro, anti-inflammatory macrophages from RP105-/- mice displayed increased IL10 production, while MCP1 and IL6 levels secreted by pro-inflammatory macrophages were elevated. VSMC content in RP105-/- AVFs was markedly decreased. In vitro, RP105-/- venous VSMCs proliferation was 50% lower, whereas arterial VSMCs displayed a 50% decrease in migration, relative to WT. In conclusion, the impaired venous OR in RP105-/- mice could result from of a shift in both macrophages and VSMCs towards a regenerative phenotype, identifying a novel relationship between inflammation and VSMC function in AVF maturation.


Assuntos
Antígenos CD/genética , Fístula Arteriovenosa/genética , Fístula Arteriovenosa/fisiopatologia , Deleção de Genes , Remodelação Vascular/genética , Animais , Antígenos CD/metabolismo , Fístula Arteriovenosa/patologia , Biomarcadores , Biópsia , Proliferação de Células , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Imunofluorescência , Humanos , Imuno-Histoquímica , Macrófagos/metabolismo , Macrófagos/patologia , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...