Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30759734

RESUMO

Dispersion and aggregation behavior of nanoparticles in aquatic environment may be affected by pH, salinity, and dissolved organic matter, which would change its ecological risk. Effects of time, power and temperature on the alumina nanoparticles (nano-Al2O3) ultrasonic dispersion in water were discussed. Al2O3 had a best ultrasonic dispersion for 30 min at 105 W and 30 °C. The concentration of Al2O3 could be measured by ultraviolet (UV) spectrophotometer, and the method was efficient and accurate. Furthermore, the sedimentation rate of Al2O3 was related to pH, salinity, and its concentration in the artificial seawater. When pH was 7.31, approaching the isoelectric point of Al2O3, they aggregated and settled fastest. Settlement coefficient (k) of Al2O3 increased by 3 and 2.7 times while the salinity and its concentration increased. The sedimentation rate was higher in natural seawater than that in artificial seawater. All results indicated that nano-Al2O3 would be removed in aquatic environment.


Assuntos
Óxido de Alumínio/química , Precipitação Química , Nanopartículas/química , Poluentes Químicos da Água/química , Água/química , Absorciometria de Fóton , Concentração de Íons de Hidrogênio , Salinidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...