Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 873: 162343, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36813197

RESUMO

Methane (CH4) emissions from streams are an important component of the global carbon budget of freshwater ecosystems, but these emissions are highly variable and uncertain at the temporal and spatial scales associated with watershed urbanization. In this study, we conducted investigations of dissolved CH4 concentrations and fluxes and related environmental parameters at high spatiotemporal resolution in three montanic streams that drain different landscapes in Southwest China. We found that the average CH4 concentrations and fluxes in the highly urbanized stream (2049 ± 2164 nmol L-1 and 11.95 ± 11.75 mmol·m-2·d-1) were much higher than those in the suburban stream (1021 ± 1183 nmol L-1 and 3.29 ± 3.66 mmol·m-2·d-1) and were approximately 12.3 and 27.8 times those in the rural stream, respectively. It provides powerful evidence that watershed urbanization strongly enhances riverine CH4 emission potential. Temporal patterns of CH4 concentrations and fluxes and their controls were not consistent among the three streams. Seasonal CH4 concentrations in the urbanized streams had negative exponential relationships with monthly precipitation and demonstrated greater sensitivity to rainfall dilution than to the temperature priming effect. Additionally, the CH4 concentrations in the urban and semiurban streams showed strong, but opposite, longitudinal patterns, which were closely related to urban distribution patterns and the HAILS (human activity intensity of the land surface) within the watersheds. High carbon and nitrogen loads from sewage discharge in urban areas and the spatial arrangement of the sewage drainage contributed to the different spatial patterns of the CH4 emissions in different urbanized streams. Moreover, CH4 concentrations in the rural stream were mainly controlled by pH and inorganic nitrogen (NH4+ and NO3-), while urban and semiurban streams were dominated by total organic carbon and nitrogen. We highlighted that rapid urban expansion in montanic small catchments will substantially enhance riverine CH4 concentrations and fluxes and dominate their spatiotemporal pattern and regulatory mechanisms. Future work should consider the spatiotemporal patterns of such urban-disturbed riverine CH4 emissions and focus on the relationship between urban activities with aquatic carbon emissions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...