Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Total Environ ; 824: 153752, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35176388

RESUMO

For the last two decades different scientific disciplines have focused on lacustrine dissolved organic matter (DOM) given its importance in the biogeochemistry of carbon and in ecosystem functioning. New satellites supply the appropriate resolutions to evaluate chromophoric dissolved organic matter (CDOM) in inland waters, opening the possibility to estimate DOM at appropriate spatiotemporal scales. This requires, however, a robust relationship between CDOM and dissolved organic carbon (DOC). In this work, we evaluated the use of CDOM as a proxy of DOC in 7 Andean Patagonian lakes. Considering the entire data set, CDOM absorption coefficients (a355 and a440) were linearly related with DOC. Shallow lakes, however, drove this relationship showing a moderate relationship, whereas, deep lakes with lower colour presented a weaker relationship. Therefore, we assessed the use of CDOM spectral shape information to improve DOC estimates regardless of observed DOM differences due to climatic seasonality and lakes' morphometry. The use of well-known CDOM spectral shape metrics (i.e., S275-295 and a250:a365 ratio) significantly improved DOC estimation. Particularly, using a Gaussian decomposition approach we found that much of the variation in the spectral shape, associated with the variability of CDOM:DOC ratio, was explained by differences in two dynamic regions centred at 270 and 320 nm. A strong nonlinear relationship was found between the a270:a320 ratio and the DOC-specific absorption coefficients a*355 and a*440. This was translated into a further improvement in DOC estimation yielding the higher R2 and lower mean absolute differences (MAPD < 16%), either considering the entire data set or shallow and deep lakes separately. Our results highlight that incorporating the CDOM spectral shape information improves the characterization of the DOC pool of inland waters, which is particularly relevant for remote and/or inaccessible sites and has significant implications for the environmental management, biogeochemical studies and future remote sensing applications.


Assuntos
Matéria Orgânica Dissolvida , Lagos , Carbono , Ecossistema , Lagos/química
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 235: 118278, 2020 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-32272425

RESUMO

The Agrio-Caviahue is a natural stream-lake system composed of the Upper Agrio River (UAR) -Lake Caviahue-Lower Agrio River (LAR). The system has a broad pH gradient from extremely acid in the hot spring to almost neutral pH only 60 km downstream the source, and varies as a function of the distance. The aim of this study was to analyze the dynamics of the dissolved organic matter (DOM) of this extreme system. For that matter, an absorbance and fluorescence-based characterization was performed on natural water samples and hydrophobic resin DOM extracts during different seasons in nine sampling stations. Between August and December, the hydrological connectivity is maximum due to precipitation and snowmelt, respectively. During these months, the stream that exits the lake governs the chemical characteristics downstream mainly in the period of high connectivity. In contrast, in the dry season when the flow of LAR is minimum, the two major affluents of this river influence its pH and DOM features, and deliver inputs of humified DOM from the wetlands where the tributaries are born. DOM was characterized by having low absorbance. The PARAFAC analysis of the fluorescent DOM (FDOM) validated three fluorescent components in the natural samples (with humic and non-humic features), two of which were also recorded in the extracts, meaning that no additional hydrophobic components were missed under the limit of detection of the fluorometer. The unique features of Agrio-Caviahue DOM resemble those found in DOM from Yellowstone hot springs, both acid and alkaline.

3.
In. Secretaría de Recursos Naturales y Desarrollo Sustentable. Instituto Nacional del Agua y del Ambiente; International Lake Environment Committee Foundation. Programa y trabajos presentados. San Martín de los Andes, INA/ILEC, 1997. , ilus. (64473).
Monografia em Inglês | BINACIS | ID: bin-64473

RESUMO

Se ha realizado un estudio de los sistemas de alimentos de los lagos oligotróficos en la región de Bariloche. Se nota diferencias comparados con los lagos del hemisferio norte. Se podrían crear cambios con la incorporación de salmonidas exóticas y distintas especies de árboles


Assuntos
Lagos , Nutrientes , Plâncton , Zooplâncton , Congresso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...