Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 943: 173668, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38839013

RESUMO

This study investigates the chronic impact of two of the most widely consumed antineoplastic drugs, Ifosfamide (IF) and Cisplatin (CDDP), on the bivalve species Mytilus galloprovincialis under current (17 °C) and predicted warming conditions (21 °C). Accompanying the expected increase in worldwide cancer incidence, antineoplastics detection in the aquatic environment is also expected to rise. Mussels were exposed to varying concentrations of IF (10, 100, 500 ng/L) and CDDP (10, 100, 1000 ng/L) for 28 days. Biochemical analyses focused on metabolic, antioxidant and biotransformation capacities, cellular damage, and neurotoxicity. Results showed temperature-dependent variations in biochemical responses. Metabolic capacity remained stable in mussels exposed to IF, while CDDP exposure increased it at 1000 ng/L for both temperatures. Antioxidant enzyme activities were unaffected by IF, but CDDP activated them, particularly at 21 °C. Biotransformation capacity was unchanged by IF but enhanced by CDDP. Nevertheless, cellular damage occurred at CDDP concentrations above 100 ng/L, regardless of temperature. Integrated biomarker responses highlighted CDDP's greater impact, emphasizing the critical role of temperature in shaping organismal responses and underscoring the complexity of environmental stressor interactions.


Assuntos
Antineoplásicos , Cisplatino , Ifosfamida , Mytilus , Temperatura , Poluentes Químicos da Água , Animais , Cisplatino/toxicidade , Mytilus/fisiologia , Mytilus/efeitos dos fármacos , Ifosfamida/toxicidade , Poluentes Químicos da Água/toxicidade , Antineoplásicos/toxicidade
2.
Sci Total Environ ; 885: 163904, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37142022

RESUMO

Coastal ecosystems are currently exposed to pollutants and climate change. Namely, the increasing consumption of antineoplastic drugs and their potential release to aquatic ecosystems are raising concerns. Nevertheless, information regarding the toxicity of these drugs towards non-target species is scarce, especially considering climate change scenarios. Ifosfamide (IF) and cisplatin (CDDP) are among the antineoplastics already detected in aquatic compartments and due to their mode of action (MoA) can negatively affect aquatic organisms. This study evaluates the transcription of 17 selected target genes related to the MoA of IF and CDDP in Mytilus galloprovincialis gills exposed to environmentally relevant and toxicological meaningful concentrations (IF - 10, 100, 500 ng/L; CDDP - 10, 100, 1000 ng/L), under an actual (17 °C) and predicted warming scenario (21 °C). Results showed an upregulation of the cyp4y1 gene when exposed to the highest concentrations of IF, regardless of the temperature. Both drugs upregulated genes related to DNA damage and apoptosis (p53, caspase 8 and gadd45), especially under warmer conditions. Increased temperature also downregulated genes related to stress and immune responses (krs and mydd88). Therefore, the present results showed a gene transcriptional response of mussels to increasing concentrations of antineoplastics and that warmer temperatures modulated those effects.


Assuntos
Antineoplásicos , Mytilus , Poluentes Químicos da Água , Animais , Cisplatino/toxicidade , Mytilus/fisiologia , Ifosfamida/toxicidade , Transcriptoma , Mudança Climática , Ecossistema , Poluentes Químicos da Água/análise
3.
Environ Toxicol Pharmacol ; 97: 104029, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36455836

RESUMO

Climate change-associated factors and pollutants, such as rare earth elements (REEs), have been identified as contributors to environmental changes. However, the toxicity resulting from the combination of these stressors has received little attention. Neodymium (Nd) is a REE that has been widely used, and this study aimed to evaluate the responses of Mytilus galloprovincialis to Nd exposure (10 µg/L), under actual (17 °C) and predicted warming conditions (21 °C), after fourteen days of exposure followed by fourteen days of recovery (without Nd), analyzing Nd accumulation, histopathological and biochemical alterations. The results showed that increased temperature and Nd exposure caused histopathological injuries in the gills. Contaminated mussels at 17 °C showed cellular damage, while at 21 °C, mussels were able to avoid cellular damage. After the recovery period, no improvements in gill's status were found and cellular damage was still present, highlighting the impacts caused by previous exposure to Nd.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Temperatura , Neodímio/toxicidade , Estresse Oxidativo , Mytilus/fisiologia , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
4.
Environ Pollut ; 288: 117735, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34271515

RESUMO

Cyclophosphamide (CP) is an antineoplastic drug widely used in chemotherapy treatments with high consumption rates and that has been detected in the aquatic environment. After being released into the aquatic environment, CP may cause adverse effects on aquatic organisms since antineoplastics are well-known cytotoxic, genotoxic, mutagenic and teratogenic drugs. Moreover, predicted environmental changes, such as the temperature rising, may alter the impacts caused by CP on organisms. Thus, the present study aimed to assess the effects caused by CP chronic exposure in the mussel Mytilus galloprovincialis, under actual and predicted warming scenarios. Organisms were exposed for 28 days to different concentrations of CP (10, 100, 500 and 1000 ng/L) at control (17 ± 1.0 °C) and increased (21 ± 1.0 °C) temperatures. Biochemical responses related to metabolic capacity, energy reserves, oxidative stress and neurotoxicity were assessed. The results showed that the organisms were able to maintain their metabolic capacity under all exposure conditions. However, their antioxidant defense mechanisms were activated mostly at higher CP concentrations being able to prevent cellular damage, even under the warming scenario. Overall, the present findings suggest that temperature rise may not alter the impacts of CP towards M. galloprovincialis.


Assuntos
Antineoplásicos , Mytilus , Poluentes Químicos da Água , Animais , Ciclofosfamida , Estresse Oxidativo , Temperatura , Poluentes Químicos da Água/análise
5.
J Hazard Mater ; 412: 125028, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33951853

RESUMO

Cyclophosphamide (CP) and Cisplatin (CDDP) are antineoplastic drugs widely used in the treatment of neoplastic diseases that have been detected in the aquatic environment. This review summarizes the current knowledge on the presence in the aquatic environment of these two drugs and their effects on freshwater and marine invertebrates, which includes good model species in ecotoxicology and risk assessment programs. The consumption levels, occurrence in freshwater and marine ecosystems, and the impacts exerted on aquatic organisms, even at low concentrations, justifies this review and the selection of these two drugs. Both pharmaceuticals were detected in different aquatic environments, with concentrations ranging from ng L-1 up to 687.0 µg L-1 (CP) and 250 µg L-1 (CDDP). The available studies showed that CP and CDDP induce individual and sub-individual impacts on aquatic invertebrate species. The most common effects reported were changes in the reproductive function, oxidative stress, genotoxicity, cytotoxicity and neurotoxicity. The literature used in this review supports the need to increase monitoring studies concerning the occurrence of antineoplastic drugs in the aquatic environment since negative effects have been reported even at trace concentrations (ng L-1). Furthermore, marine ecosystems should be considered as a priority since less is known on the occurrence and effects of antineoplastic drugs in this environment comparing to freshwater ecosystems.


Assuntos
Antineoplásicos , Poluentes Químicos da Água , Animais , Antineoplásicos/toxicidade , Organismos Aquáticos , Cisplatino/toxicidade , Ciclofosfamida/toxicidade , Ecossistema , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
6.
Ecotoxicol Environ Saf ; 215: 112101, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33765593

RESUMO

Rare earth elements (REEs) are gaining growing attention in environmental and ecotoxicological studies due to their economic relevance, wide range of applications and increasing environmental concentrations. Among REEs, special consideration should be given to Gadolinium (Gd), whose wide exploitation as a magnetic resonance imaging (MRI) contrast agent is enhancing the risk of its occurrence in aquatic environments and impacts on aquatic organisms. A promising approach for water decontamination from REEs is sorption, namely through the use of macroalgae and in particular Ulva lactuca that already proved to be an efficient biosorbent for several chemical elements. Therefore, the present study aimed to evaluate the toxicity of Gd, comparing the biochemical effects induced by this element in the presence or absence of algae. Using the bivalve species Mytilus galloprovincialis, Gd toxicity was evaluated by assessing changes on mussels' metabolic capacity and oxidative status. Results clearly showed the toxicity of Gd but further revealed the capacity of U. lactuca to prevent injuries to M. galloprovincialis, mainly reducing the levels of Gd in water and thus the bioaccumulation and toxicity of this element by the mussels. The results will advance the state of the art not only regarding the effects of REEs but also with regard to the role of algae in accumulation of metals and protection of aquatic organisms, generating new insights on water safety towards aquatic wildlife and highlighting the possibility for resources recovery.


Assuntos
Gadolínio/metabolismo , Mytilus/metabolismo , Ulva/fisiologia , Poluentes Químicos da Água/metabolismo , Animais , Animais Selvagens/metabolismo , Ecotoxicologia , Metais Terras Raras , Mytilus/efeitos dos fármacos , Oxirredução , Alga Marinha/metabolismo , Ulva/metabolismo , Água/metabolismo , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...