Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cellulose (Lond) ; 28(14): 8971-8985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720465

RESUMO

Microcrystalline cellulose (MCC) is a semi-crystalline material with inherent variable crystallinity due to raw material source and variable manufacturing conditions. MCC crystallinity variability can result in downstream process variability. The aim of this study was to develop models to determine MCC crystallinity index (%CI) from Raman spectra of 30 commercial batches using Raman probes with spot sizes of 100 µm (MR probe) and 6 mm (PhAT probe). A principal component analysis model separated Raman spectra of the same samples captured using the different probes. The %CI was determined using a previously reported univariate model based on the ratio of the peaks at 380 and 1096 cm-1. The univariate model was adjusted for each probe. The %CI was also predicted from spectral data from each probe using partial least squares regression models (where Raman spectra and univariate %CI were the dependent and independent variables, respectively). Both models showed adequate predictive power. For these models a general reference amorphous spectrum was proposed for each instrument. The development of the PLS model substantially reduced the analysis time as it eliminates the need for spectral deconvolution. A web application containing all the models was developed. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10570-021-04093-1.

2.
Int J Pharm ; 595: 120246, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33482224

RESUMO

Multivariate Curve Resolution (MCR) was used to determine the phase purity of pharmaceutical co-crystals from mid infrared spectra. An in-silico coformer screening was used to choose one of ten potential coformers. This analysis used quantum chemistry simulation to predict which coformers are thermodynamically inclined to form cocrystals with the model drug, hydrochlorothiazide. The coformer chosen was nicotinamide. An experimental solvent screening by ultrasound assisted slurry co-crystallization was performed to evaluate the capacity of the method to determine phase purity. Afterwards, slurry and slow evaporation co-crystallizations were performed at 10, 25, and 40 °C using 7 solvent systems, and two levels of agitation for the evaporation co-crystallization (on and off). Mid infrared spectroscopy (MIRS) analysis of the products of these co-crystallizations was used to develop an MCR model to determine co-crystal phase purity. The MCR results were compared with a reference co-crystal. Experimental design (DoE) was used to investigate the effect of solvents, temperature, and agitation on the purity of co-crystals produced by slurry and evaporation co-crystallization. DoE revealed that evaporation co-crystallization with agitating at 65 rpm formed co-crystals with greater phase purity. The optimal temperature varied with the solvent used.


Assuntos
Cristalização/métodos , Preparações Farmacêuticas/química , Espectrofotometria Infravermelho/métodos , Varredura Diferencial de Calorimetria , Química Farmacêutica/métodos , Simulação por Computador , Hidroclorotiazida/química , Análise Multivariada , Niacinamida/química , Solventes/química , Termodinâmica , Difração de Raios X
3.
Int J Pharm ; 589: 119838, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32890656

RESUMO

The study presented was conducted to determine whether a percolation threshold value, previously determined for ibuprofen/microcrystalline cellulose (MCC) blends using percolation theory and compression data (Queiroz et al., 2019), could translate to tablet disintegration and dissolution data. The influence of MCC grade (air stream dried versus spray dried) on tablet disintegration and dissolution was also investigated. Complementary to conventional disintegration and dissolution testing, Raman imaging determined drug distribution within tablets, and in-line particle video microscopy (PVM) and focused-beam reflectance measurement (FBRM) monitored tablet disintegration. Tablets were prepared containing 0-30% w/w ibuprofen. Raman imaging confirmed the percolation threshold by quantifying the number and equivalent circular diameters of ibuprofen domains on tablet surfaces. Across the percolation threshold, a step change in dissolution behaviour occurred, and tablets containing air stream dried MCC showed slower disintegration rates compared to tablets containing spray dried MCC. Dissolution measurements confirmed experimentally a percolation threshold in agreement with that determined using percolation theory and compression data. An increase in drug domains, due to cluster formation, and less efficient tablet disintegration contributed to slower ibuprofen dissolution above the percolation threshold. Slower dissolution was measured for tablets containing air stream dried compared to spray dried MCC.


Assuntos
Excipientes , Ibuprofeno , Celulose , Solubilidade , Comprimidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...