Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 22(1): 1, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33388027

RESUMO

BACKGROUND: Protein-peptide interactions play a fundamental role in a wide variety of biological processes, such as cell signaling, regulatory networks, immune responses, and enzyme inhibition. Peptides are characterized by low toxicity and small interface areas; therefore, they are good targets for therapeutic strategies, rational drug planning and protein inhibition. Approximately 10% of the ethical pharmaceutical market is protein/peptide-based. Furthermore, it is estimated that 40% of protein interactions are mediated by peptides. Despite the fast increase in the volume of biological data, particularly on sequences and structures, there remains a lack of broad and comprehensive protein-peptide databases and tools that allow the retrieval, characterization and understanding of protein-peptide recognition and consequently support peptide design. RESULTS: We introduce Propedia, a comprehensive and up-to-date database with a web interface that permits clustering, searching and visualizing of protein-peptide complexes according to varied criteria. Propedia comprises over 19,000 high-resolution structures from the Protein Data Bank including structural and sequence information from protein-peptide complexes. The main advantage of Propedia over other peptide databases is that it allows a more comprehensive analysis of similarity and redundancy. It was constructed based on a hybrid clustering algorithm that compares and groups peptides by sequences, interface structures and binding sites. Propedia is available through a graphical, user-friendly and functional interface where users can retrieve, and analyze complexes and download each search data set. We performed case studies and verified that the utility of Propedia scores to rank promissing interacting peptides. In a study involving predicting peptides to inhibit SARS-CoV-2 main protease, we showed that Propedia scores related to similarity between different peptide complexes with SARS-CoV-2 main protease are in agreement with molecular dynamics free energy calculation. CONCLUSIONS: Propedia is a database and tool to support structure-based rational design of peptides for special purposes. Protein-peptide interactions can be useful to predict, classifying and scoring complexes or for designing new molecules as well. Propedia is up-to-date as a ready-to-use webserver with a friendly and resourceful interface and is available at: https://bioinfo.dcc.ufmg.br/propedia.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Bases de Dados de Proteínas , Peptídeos/química , Proteínas/química , Algoritmos , Humanos
2.
BMC Bioinformatics ; 21(1): 143, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32293241

RESUMO

BACKGROUND: Protein-protein interactions (PPIs) are fundamental in many biological processes and understanding these interactions is key for a myriad of applications including drug development, peptide design and identification of drug targets. The biological data deluge demands efficient and scalable methods to characterize and understand protein-protein interfaces. In this paper, we present ppiGReMLIN, a graph based strategy to infer interaction patterns in a set of protein-protein complexes. Our method combines an unsupervised learning strategy with frequent subgraph mining in order to detect conserved structural arrangements (patterns) based on the physicochemical properties of atoms on protein interfaces. To assess the ability of ppiGReMLIN to point out relevant conserved substructures on protein-protein interfaces, we compared our results to experimentally determined patterns that are key for protein-protein interactions in 2 datasets of complexes, Serine-protease and BCL-2. RESULTS: ppiGReMLIN was able to detect, in an automatic fashion, conserved structural arrangements that represent highly conserved interactions at the specificity binding pocket of trypsin and trypsin-like proteins from Serine-protease dataset. Also, for the BCL-2 dataset, our method pointed out conserved arrangements that include critical residue interactions within the conserved motif LXXXXD, pivotal to the binding specificity of BH3 domains of pro-apoptotic BCL-2 proteins towards apoptotic suppressors. Quantitatively, ppiGReMLIN was able to find all of the most relevant residues described in literature for our datasets, showing precision of at least 69% up to 100% and recall of 100%. CONCLUSIONS: ppiGReMLIN was able to find highly conserved structures on the interfaces of protein-protein complexes, with minimum support value of 60%, in datasets of similar proteins. We showed that the patterns automatically detected on protein interfaces by our method are in agreement with interaction patterns described in the literature.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Animais , Gráficos por Computador , Mineração de Dados , Complexos Multiproteicos/química , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Tripsina/química , Tripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...