Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36566682

RESUMO

Studies on the globin family are continuously revealing insights into the mechanisms of gene and protein evolution. The rise of a new globin gene type in Pelobatoidea and Neobatrachia (Amphibia:Anura) from an α-globin precursor provides the opportunity to investigate the genetic and physical mechanisms underlying the origin of new protein structural and functional properties. This amphibian-specific globin (globin A/GbA) discovered in the heart of Rana catesbeiana is a monomer. As the ancestral oligomeric state of α-globins is a homodimer, we inferred that the ancestral state was lost somewhere in the GbA lineage. Here, we combined computational molecular evolution with structural bioinformatics to determine the extent to which the loss of the homodimeric state is pervasive in the GbA clade. We also characterized the loci of GbA genes in Bufo bufo. We found two GbA clades in Neobatrachia. One was deleted in Ranidae, but retained and expanded to yield a new globin cluster in Bufonidae species. Loss of the ancestral oligomeric state seems to be pervasive in the GbA clade. However, a taxonomic sampling that includes more Pelobatoidea, as well as early Neobatrachia, lineages would be necessary to determine the oligomeric state of the last common ancestor of all GbA. The evidence presented here points out a possible loss of oligomerization in Pelobatoidea GbA as a result of amino acid substitutions that weaken the homodimeric state. In contrast, the loss of oligomerization in both Neobatrachia GbA clades was linked to independent deletions that disrupted many packing contacts at the homodimer interface.


Assuntos
Evolução Molecular , Globinas , Animais , Globinas/genética , Filogenia , Anfíbios/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-33202310

RESUMO

The globin gene repertoire of gnathostome vertebrates is dictated by differential retention and loss of nine paralogous genes: androglobin, neuroglobin, globin X, cytoglobin, globin Y, myoglobin, globin E, and the α- and ß-globins. We report the globin gene repertoire of three orders of modern amphibians: Anura, Caudata, and Gymnophiona. Combining phylogenetic and conserved synteny analysis, we show that myoglobin and globin E were lost only in the Batrachia clade, but retained in Gymnophiona. The major amphibian groups also retained different paralogous copies of globin X. None of the amphibian presented αD-globin gene. Nevertheless, two clades of ß-globins are present in all amphibians, indicating that the amphibian ancestor possessed two paralogous proto ß-globins. We also show that orthologs of the gene coding for the monomeric hemoglobin found in the heart of Rana catesbeiana are present in Neobatrachia and Pelobatoidea species we analyzed. We suggest that these genes might perform myoglobin- and globin E-related functions. We conclude that the repertoire of globin genes in amphibians is dictated by both retention and loss of the paralogous genes cited above and the rise of a new globin gene through co-option of an α-globin, possibly facilitated by a prior event of transposition.


Assuntos
Anfíbios/genética , Globinas/genética , Animais , Evolução Molecular , Filogenia , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...