Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 223(Pt 2): 121780, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33298285

RESUMO

A new composite electrode (G-PSE) was developed from graphite powder and expanded polystyrene (EPS, Styrofoam) by simply dissolving the foam in chloroform, incorporating the graphite particles under mixing and volatilizing the solvent at 80 °C. The resulting rigid black composite can be softened with acetone and so it can easily be molded to any shape, e.g., into a PTFE tube with an electric contact, to build the electrode. A 75% graphite content (w/w) was found appropriate for preparing the G-PSE with a working potential similar to that of carbon paste electrodes, superior mechanical stability and a much faster response to ferrocyanide, close to reversible and similar to that of the much more expensive glassy carbon electrode. Applications of the G-PSE to dipyrone and paracetamol quantification in pharmaceutical formulations were demonstrated. The results accomplished by flow injection analysis with amperometric detection at the G-PSE were successfully validated against standards methods.

2.
Anticancer Agents Med Chem ; 13(1): 186-92, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22931421

RESUMO

Azidothymidine (AZT) is an antiretroviral drug that affects cell proliferation, apoptosis, and the NF-κB pathway. As multiple myeloma (MM) presents with constitutive activation of NF-κB, we analyzed the effect of AZT on human MM cell lines. We evaluated the cytotoxic effect of AZT in human MM cell lines sensitive (8226/S) or resistant to doxorubicin (8226/DX5) and human T cell lymphoblast-like cells, uterine sarcoma cells, and HUVEC using MTT assay. Cytotoxicity was also evaluated in vivo in nude mice xenografted with 8226/S tumor. The effect of AZT on the expression of genes involved in cell proliferation, apoptosis, angiogenesis, and the NF-κB pathway was analyzed in the xenografts using real-time polymerase chain reaction. AZT was effective against both 8226/S and 8226/DX5 cells in a dose and time-dependent manner (p = 0.02) in vitro and promoted cell cycle arrest in S phase in these cells. The tumor volume was lower in mice treated with AZT compared to untreated mice (p = 0.0003). AZT down-regulated the pro-proliferative genes encoding AKT1, MYC, STAT1, MAPK8, MAPK9, CCL-3, Bcl-3, and cyclin D2; pro-angiogenenic genes encoding VEGF and IL8; and genes involved in cell adhesion (ICAM1 and FN1) and the NF-κB pathway. AZT up-regulated the expression of tumor suppressor gene FOXP1 and the pro-apoptotic genes encoding BID, Bcl-10, and caspase-8. Thus, we demonstrated the cytotoxic effect of AZT in human MM cell lines for the first time. Our data may provide the rationale for future clinical trials of AZT for treating MM.


Assuntos
Antineoplásicos/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Zidovudina/uso terapêutico , Antineoplásicos/farmacologia , Expressão Gênica/efeitos dos fármacos , Humanos , Mieloma Múltiplo/genética , Reação em Cadeia da Polimerase em Tempo Real , Zidovudina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...