Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Genet ; 66(6): 104748, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36948288

RESUMO

Differences of sex development (DSDs) are a group of congenital conditions characterized by a discrepancy between chromosomal, gonadal, and genital sex development of an individual, with significant impact on medical, psychological and reproductive life. The genetic heterogeneity of DSDs complicates the diagnosis and almost half of the patients remains undiagnosed. In this context, chromosomal imbalances in syndromic DSD patients may help to identify new genes implicated in DSDs. In this study, we aimed at describing the burden of chromosomal imbalances including submicroscopic ones (copy number variants or CNVs) in a cohort of prenatal syndromic DSD patients, and review their role in DSDs. Our patients carried at least one pathogenic or likely pathogenic chromosomal imbalance/CNV or low-level mosaicism for aneuploidy. Almost half of the cases resulted from an unbalanced chromosomal rearrangement. Chromosome 9p/q, 4p/q, 3q and 11q anomalies were more frequently observed. Review of the literature confirmed the causative role of CNVs in DSDs, either in disruption of known DSD-causing genes (SOX9, NR0B1, NR5A1, AR, ATRX, …) or as a tool to suspect new genes in DSDs (HOXD cluster, ADCY2, EMX2, CAMK1D, …). Recurrent CNVs of regulatory elements without coding sequence content (i.e. duplications/deletions upstream of SOX3 or SOX9) confirm detection of CNVs as a mean to explore our non-coding genome. Thus, CNV detection remains a powerful tool to explore undiagnosed DSDs, either through routine techniques or through emerging technologies such as long-read whole genome sequencing or optical genome mapping.


Assuntos
Aneuploidia , Translocação Genética , Gravidez , Feminino , Humanos , Estudos Retrospectivos , Mosaicismo , Variações do Número de Cópias de DNA , Cromossomos , Diagnóstico Pré-Natal/métodos
2.
Orphanet J Rare Dis ; 17(1): 100, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241104

RESUMO

BACKGROUND: Individuals with pathogenic variants in SATB2 display intellectual disability, speech and behavioral disorders, dental abnormalities and often features of Pierre Robin sequence. SATB2 encodes a transcription factor thought to play a role in bone remodeling. The primary aim of our study was to systematically review the skeletal manifestations of SATB2-associated syndrome. For this purpose, we performed a non-interventional, multicenter cohort study, from 2017 to 2018. We included 19 patients, 9 females and 10 males ranging in age from 2 to 19 years-old. The following data were collected prospectively for each patient: clinical data, bone markers and calcium and phosphate metabolism parameters, skeletal X-rays and bone mineral density. RESULTS: Digitiform impressions were present in 8/14 patients (57%). Vertebral compression fractures affected 6/17 patients (35%). Skeletal demineralization (16/17, 94%) and cortical thinning of vertebrae (15/17) were the most frequent radiological features at the spine. Long bones were generally demineralized (18/19). The distal phalanges were short, thick and abnormally shaped. C-telopeptide (CTX) and Alkaline phosphatase levels were in the upper normal values and osteocalcin and serum procollagen type 1 amino-terminal propeptide (P1NP) were both increased. Vitamin D insufficiency was frequent (66.7%). CONCLUSION: We conclude that SATB2 pathogenic variants are responsible for skeletal demineralization and osteoporosis. We found increased levels of bone formation markers, supporting the key role of SATB2 in osteoblast differentiation. These results support the need for bone evaluation in children and adult patients with SATB2-associated syndrome (SAS).


Assuntos
Fraturas por Compressão , Proteínas de Ligação à Região de Interação com a Matriz , Fraturas da Coluna Vertebral , Fatores de Transcrição , Adolescente , Adulto , Biomarcadores , Densidade Óssea/genética , Osso e Ossos , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Fraturas por Compressão/genética , Fraturas por Compressão/metabolismo , Fraturas por Compressão/patologia , Humanos , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Estudos Prospectivos , Fraturas da Coluna Vertebral/genética , Fraturas da Coluna Vertebral/metabolismo , Fraturas da Coluna Vertebral/patologia , Síndrome , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Adulto Jovem
3.
Eur J Med Genet ; 61(12): 773-782, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30391507

RESUMO

OBJECTIVES: Periventricular nodular heterotopia (PNH) is a malformation of cortical development which presents with heterogeneous imaging, neurological phenotype and outcome. There is a paucity of comprehensive description detailing the prenatal diagnosis of PNH. The aim of this study is to report neuroimaging features and correlated outcomes in order to delineate the spectrum of prenatally diagnosed PNH. METHODS: It was a retrospective study over 15 years in five tertiary centers. All fetuses with prenatally diagnosed PNH were collected. Fetal ultrasound and MRI were reviewed and genetic screening collected. Prenatal findings were analyzed in correlation to fetopathological analyses and post-natal follow up. RESULTS: Thirty fetuses (22 females and 8 males) with PNH were identified. The two major ultrasound signs were ventriculomegaly associated with dysmorphic frontal horns (60%) and posterior fossa anomalies (73.3%). On MRI, two groups of PNH were identified: the contiguous and diffuse PNH (n = 15, 50%), often associated with megacisterna magna, and the non-diffuse, either anterior, posterior or unilateral PNH. FLNA mutations were found in 6/11 cases with diffuse PNH. Additional cortical malformations were exclusively observed in non diffuse PNH (9/15; 60%). Twenty-four pregnancies (80%) were terminated. Six children aged 6 months to 5 years are alive. Five have normal neurodevelopment (all had diffuse PNH) whereas one case with non diffuse PNH has developmental delay and epilepsy. CONCLUSION: PNH is heterogeneous but patients with diffuse PNH are a common subgroup with specific findings on prenatal imaging and implications for prenatal counseling.


Assuntos
Encéfalo/diagnóstico por imagem , Epilepsia/diagnóstico , Heterotopia Nodular Periventricular/genética , Diagnóstico Pré-Natal , Encéfalo/fisiopatologia , Criança , Pré-Escolar , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Epilepsia/fisiopatologia , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Heterotopia Nodular Periventricular/diagnóstico , Heterotopia Nodular Periventricular/diagnóstico por imagem , Heterotopia Nodular Periventricular/fisiopatologia , Fenótipo , Gravidez , Estudos Retrospectivos
4.
Clin Genet ; 93(3): 567-576, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28708303

RESUMO

Although whole-exome sequencing (WES) is the gold standard for the diagnosis of neurodevelopmental disorders (NDDs), it remains expensive for some genetic centers. Commercialized panels comprising all OMIM-referenced genes called "medical exome" (ME) constitute an alternative strategy to WES, but its efficiency is poorly known. In this study, we report the experience of 2 clinical genetic centers using ME for diagnosis of NDDs. We recruited 216 consecutive index patients with NDDs in 2 French genetic centers, corresponded to the daily practice of the units and included non-syndromic intellectual disability (NSID, n = 33), syndromic ID (NSID = 122), pediatric neurodegenerative disorders (n = 7) and autism spectrum disorder (ASD, n = 54). We sequenced samples from probands and their parents (when available) with the Illumina TruSight One sequencing kit. We found pathogenic or likely pathogenic variants in 56 index patients, for a global diagnostic yield of 25.9%. The diagnosis yield was higher in patients with ID as the main diagnosis (32%) than in patients with ASD (3.7%). Our results suggest that the use of ME is a valuable strategy for patients with ID when WES cannot be used as a routine diagnosis tool.


Assuntos
Sequenciamento do Exoma , Estudos de Associação Genética , Predisposição Genética para Doença , Transtornos do Neurodesenvolvimento/genética , Adolescente , Adulto , Alelos , Criança , Pré-Escolar , Biologia Computacional/métodos , Feminino , Estudos de Associação Genética/métodos , Humanos , Lactente , Padrões de Herança , Masculino , Pessoa de Meia-Idade , Transtornos do Neurodesenvolvimento/diagnóstico , Fenótipo , Análise de Sequência de DNA/métodos , Adulto Jovem
5.
Clin Genet ; 91(6): 868-880, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28229453

RESUMO

The group of chondrodysplasia with multiple dislocations includes several entities, characterized by short stature, dislocation of large joints, hand and/or vertebral anomalies. Other features, such as epiphyseal or metaphyseal changes, cleft palate, intellectual disability are also often part of the phenotype. In addition, several conditions with overlapping features are related to this group and broaden the spectrum. The majority of these disorders have been linked to pathogenic variants in genes encoding proteins implicated in the synthesis or sulfation of proteoglycans (PG). In a series of 30 patients with multiple dislocations, we have performed exome sequencing and subsequent targeted analysis of 15 genes, implicated in chondrodysplasia with multiple dislocations, and related conditions. We have identified causative pathogenic variants in 60% of patients (18/30); when a clinical diagnosis was suspected, this was molecularly confirmed in 53% of cases. Forty percent of patients remain without molecular etiology. Pathogenic variants in genes implicated in PG synthesis are of major importance in chondrodysplasia with multiple dislocations and related conditions. The combination of hand features, growth failure severity, radiological aspects of long bones and of vertebrae allowed discrimination among the different conditions. We propose key diagnostic clues to the clinician.


Assuntos
Deficiência Intelectual/genética , Anormalidades Musculoesqueléticas/genética , Osteocondrodisplasias/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/fisiopatologia , Masculino , Anormalidades Musculoesqueléticas/diagnóstico , Anormalidades Musculoesqueléticas/diagnóstico por imagem , Anormalidades Musculoesqueléticas/fisiopatologia , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/fisiopatologia , Radiografia , Sequenciamento do Exoma
6.
Clin Genet ; 89(6): 659-68, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26748417

RESUMO

Holoprosencephaly (HPE) is the most common congenital cerebral malformation, characterized by impaired forebrain cleavage and midline facial anomalies. Heterozygous mutations in 14 genes have been associated with HPE and are often inherited from an unaffected parent, underlying complex genetic bases. It is now emerging that HPE may result from a combination of multiple genetic events, rather than from a single heterozygous mutation. To explore this hypothesis, we undertook whole exome sequencing and targeted high-throughput sequencing approaches to identify mutations in HPE subjects. Here, we report two HPE families in which two mutations are implicated in the disease. In the first family presenting two foetuses with alobar and semi-lobar HPE, we found mutations in two genes involved in HPE, SHH and DISP1, inherited respectively from the father and the mother. The second reported case is a family with a 9-year-old girl presenting lobar HPE, harbouring two compound heterozygous mutations in DISP1. Together, these cases of digenic inheritance and autosomal recessive HPE suggest that in some families, several genetic events are necessary to cause HPE. This study highlights the complexity of HPE inheritance and has to be taken into account by clinicians to improve HPE genetic counselling.


Assuntos
Exoma/genética , Holoprosencefalia/genética , Padrões de Herança , Análise de Sequência de DNA/métodos , Criança , Saúde da Família , Feminino , Doenças Fetais/genética , Doenças Fetais/patologia , Predisposição Genética para Doença/genética , Proteínas Hedgehog/genética , Holoprosencefalia/patologia , Humanos , Masculino , Proteínas de Membrana/genética , Mutação , Linhagem
7.
Clin Genet ; 86(4): 326-34, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24033328

RESUMO

Anophthalmia and microphthalmia (AM) are the most severe malformations of the eye, corresponding respectively to reduced size or absent ocular globe. Wide genetic heterogeneity has been reported and different genes have been demonstrated to be causative of syndromic and non-syndromic forms of AM. We screened seven AM genes [GDF6 (growth differentiation factor 6), FOXE3 (forkhead box E3), OTX2 (orthodenticle protein homolog 2), PAX6 (paired box 6), RAX (retina and anterior neural fold homeobox), SOX2 (SRY sex determining region Y-box 2), and VSX2 (visual system homeobox 2 gene)] in a cohort of 150 patients with isolated or syndromic AM. The causative genetic defect was identified in 21% of the patients (32/150). Point mutations were identified by direct sequencing of these genes in 25 patients (13 in SOX2, 4 in RAX, 3 in OTX2, 2 in FOXE3, 1 in VSX2, 1 in PAX6, and 1 in GDF6). In addition eight gene deletions (five SOX2, two OTX2 and one RAX) were identified using a semi-quantitative multiplex polymerase chain reaction (PCR) [quantitative multiplex PCR amplification of short fluorescent fragments (QMPSF)]. The causative genetic defect was identified in 21% of the patients. This result contributes to our knowledge of the molecular basis of AM, and will facilitate accurate genetic counselling.


Assuntos
Anoftalmia/genética , Heterogeneidade Genética , Microftalmia/genética , Mutação Puntual/genética , Adolescente , Adulto , Anoftalmia/diagnóstico , Anoftalmia/patologia , Criança , Pré-Escolar , Proteínas do Olho/genética , Feminino , Fatores de Transcrição Forkhead/genética , Fator 6 de Diferenciação de Crescimento/genética , Proteínas de Homeodomínio/genética , Humanos , Lactente , Masculino , Microftalmia/diagnóstico , Microftalmia/patologia , Fatores de Transcrição Otx/genética , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Proteínas Repressoras/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição/genética
8.
Mol Syndromol ; 4(6): 267-72, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24167461

RESUMO

Rhombencephalosynapsis is an uncommon, but increasingly recognized, cerebellar malformation defined as vermian agenesis with fusion of the hemispheres. The embryologic and genetic mechanisms involved are still unknown, and to date, no animal models are available. In the present study, we used Agilent oligonucleotide arrays in a large series of 57 affected patients to detect candidate genes. Four different unbalanced rearrangements were detected: a 16p11.2 deletion, a 14q12q21.2 deletion, an unbalanced translocation t(2p;10q), and a 16p13.11 microdeletion containing 2 candidate genes. These genes were further investigated by sequencing and in situ hybridization. This first microarray screening of a rhombencephalosynapsis series suggests that there may be heterogeneous genetic causes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...