Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1270268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288115

RESUMO

Several studies demonstrated that mitochondrial dynamics and metabolic pathways control T cell fate in the periphery. However, little is known about their implication in thymocyte development. Our results showed that thymic progenitors (CD3-CD4-CD8- triple negative, TN), in active division, have essentially a fused mitochondrial morphology and rely on high glycolysis and mitochondrial oxidative phosphorylation (OXPHOS). As TN cells differentiate to double positive (DP, CD4+CD8+) and single positive (SP, CD4+ and CD8+) stages, they became more quiescent, their mitochondria fragment and they downregulate glycolysis and OXPHOS. Accordingly, in vitro inhibition of the mitochondrial fission during progenitor differentiation on OP9-DL4 stroma, affected the TN to DP thymocyte transition by enhancing the percentage of TN and reducing that of DP, leading to a decrease in the total number of thymic cells including SP T cells. We demonstrated that the stage 3 triple negative pre-T (TN3) and the stage 4 triple negative pre-T (TN4) have different metabolic and functional behaviors. While their mitochondrial morphologies are both essentially fused, the LC-MS based analysis of their metabolome showed that they are distinct: TN3 rely more on OXPHOS whereas TN4 are more glycolytic. In line with this, TN4 display an increased Hexokinase II expression in comparison to TN3, associated with high proliferation and glycolysis. The in vivo inhibition of glycolysis using 2-deoxyglucose (2-DG) and the absence of IL-7 signaling, led to a decline in glucose metabolism and mitochondrial membrane potential. In addition, the glucose/IL-7R connection affects the TN3 to TN4 transition (also called ß-selection transition), by enhancing the percentage of TN3, leading to a decrease in the total number of thymocytes. Thus, we identified additional components, essential during ß-selection transition and playing a major role in thymic development.


Assuntos
Dinâmica Mitocondrial , Timo , Timo/metabolismo , Divisão Celular , Diferenciação Celular
2.
J Leukoc Biol ; 112(4): 629-639, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35224773

RESUMO

Three major subsets constitute the dendritic cells (DCs) pool in the thymus. They play key roles in self-antigen-specific thymocyte deletion and in the development of immunoregulatory T cells. Resident SIRPa- conventional DCs (cDCs, CD11c+ PDCA1lo ) are derived from intrathymic progenitors, whereas migratory SIRPa+ cDCs and plasmacytoid DCs (pDCs, CD11c+ PDCA1+ ) originate from extrathymic sites. Here, we describe the organization and the shaping of cDC populations at the steady state and under stress conditions in wild-type and mutant mice (CD3eKO, IL7RaKO, and Flt3LKO). In neonates, the thymus is mainly composed of SIRPa- -resident cDCs, whereas both cDC subsets are present in equal proportions in the adult. Upon thymus colonization, migratory SIRPa+ cDCs gain expression of phenotypic markers in a microenvironment dependent way. Here, we show that both processes are deeply impacted by mutations affecting T cell development. Under stress conditions such as sublethal irradiation, intrathymic resident SIRPa- cDCs are the first to regenerate the thymic cDC pool. Upon bone marrow transplantation, migratory SIRPa+ cDCs become the main source of thymic cDCs. These successive waves of regeneration eventually lead to a balance between resident and migratory DCs within the newly colonized thymus. These findings highlight an unrevealed division of labor between resident and migratory subsets for the organization/establishment of the thymic cDC compartment.


Assuntos
Células Dendríticas , Timócitos , Animais , Autoantígenos , Diferenciação Celular , Células Dendríticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
3.
iScience ; 24(3): 102158, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33665576

RESUMO

Innate lymphoid cells (ILCs) have been shown to be significantly affected in the small intestine lamina propria and secondary lymphoid organs (SLOs) of conventional lymphopenic mice. How ILCs are regulated by adaptive immunity in SLOs remains unclear. In T cell-deficient mice, ILC2s are significantly increased in the mesenteric lymph nodes (MLNs) at the expense of CCR6+ ILC3s, which are nonetheless increased in the peripheral lymph nodes (PLNs). Here, we show that T cells regulate lymph node-resident ILCs in a tissue- and subset-specific way. First, reducing microbial colonization from birth restored CCR6+ ILC3s in the MLNs of T cell-deficient mice. In contrast, T cell reconstitution resulted in the contraction of both MLNs ILC2s and PLNs ILC3s, whereas antagonizing microbial colonization from birth had no impact on these populations. Finally, the accumulation of MLNs ILC2s was partly regulated by T cells through stroma-derived IL-33.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...