Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Tech (Berl) ; 61(3): 253-66, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25781662

RESUMO

We set out to compare the osteogenicity of human mesenchymal stem (hMSCs) and osteoblasts (hOBs). Upon osteogenic induction in monolayer, hMSCs showed superior matrix mineralization expressing characteristic bone-related genes. For scaffold cultures, both cell types presented spindle-shaped, osteoblast-like morphologies forming a dense, interconnected network of high viability. On the scaffolds, hOBs proliferated faster. A general upregulation of parathyroid hormone-related protein (PTHrP), osteoprotegrin (OPG), receptor activator of NF-κB ligand (RANKL), sclerostin (SOST), and dentin matrix protein 1 (DMP1) was observed for both cell types. Simultaneously, PTHrP, RANKL and DMP-1 expression decreased under osteogenic stimulation, while OPG and SOST increased significantly. Following transplantation into NOD/SCID mice, µCT and histology showed increased bone deposition with hOBs. The bone was vascularized, and amounts further increased for both cell types after recombinant human bone morphogenic protein 7 (rhBMP-7) addition also stimulating osteoclastogenesis. Complete bone organogenesis was evidenced by the presence of osteocytes and hematopoietic precursors. Our study results support the asking to develop 3D cellular models closely mimicking the functions of living tissues suitable for in vivo translation.


Assuntos
Reabsorção Óssea/fisiopatologia , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Osteogênese/fisiologia , Proteína Relacionada ao Hormônio Paratireóideo/química , Animais , Reabsorção Óssea/metabolismo , Humanos , Camundongos , Camundongos SCID , Osteoblastos/química , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/fisiologia
2.
Stem Cell Res Ther ; 4(5): 105, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24004723

RESUMO

INTRODUCTION: To stimulate healing of large bone defects research has concentrated on the application of mesenchymal stem cells (MSCs). METHODS: In the present study, we induced the overexpression of the growth factors bone morphogenetic protein 2 (BMP-2) and/or Indian hedgehog (IHH) in human MSCs by adenoviral transduction to increase their osteogenic potential. GFP and nontransduced MSCs served as controls. The influence of the respective genetic modification on cell metabolic activity, proliferation, alkaline phosphatase (ALP) activity, mineralization in cell culture, and osteogenic marker gene expression was investigated. RESULTS: Transduction had no negative influence on cell metabolic activity or proliferation. ALP activity showed a typical rise-and-fall pattern with a maximal activity at day 14 and 21 after osteogenic induction. Enzyme activity was significantly higher in groups cultured with osteogenic media. The overexpression of BMP-2 and especially IHH + BMP-2 resulted in a significantly higher mineralization after 28 days. This was in line with obtained quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) analyses, which showed a significant increase in osteopontin and osteocalcin expression for osteogenically induced BMP-2 and IHH + BMP-2 transduced cells when compared with the other groups. Moreover, an increase in runx2 expression was observed in all osteogenic groups toward day 21. It was again more pronounced for BMP-2 and IHH + BMP-2 transduced cells cultured in osteogenic media. CONCLUSIONS: In summary, viral transduction did not negatively influence cell metabolic activity and proliferation. The overexpression of BMP-2 in combination with or without IHH resulted in an increased deposition of mineralized extracellular matrix, and expression of osteogenic marker genes. Viral transduction therefore represents a promising means to increase the osteogenic potential of MSCs and the combination of different transgenes may result in synergistic effects.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Proteínas Hedgehog/metabolismo , Células-Tronco Mesenquimais/citologia , Osteogênese , Adenoviridae/genética , Células da Medula Óssea/citologia , Proteína Morfogenética Óssea 2/genética , Diferenciação Celular , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Matriz Extracelular/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Proteínas Hedgehog/genética , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Osteopontina/genética , Osteopontina/metabolismo , Fatores de Tempo , Transfecção
3.
Gynecol Oncol ; 127(3): 569-78, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22964375

RESUMO

OBJECTIVE: Chemoresistance is a critical feature of advanced ovarian cancer with only 30% of patients surviving longer than 5 years. We have previously shown that four kallikrein-related (KLK) peptidases, KLK4, KLK5, KLK6 and KLK7 (KLK4-7), are implicated in peritoneal invasion and tumour growth, but underlying mechanisms were not identified. We also reported that KLK7 overexpression confers chemoresistance to paclitaxel, and cell survival via integrins. In this study, we further explored the functional consequenses of overexpression of all four KLKs (KLK4-7) simultaneously in the ovarian cancer cell line, OV-MZ-6, and its impact on integrin expression and signalling, cell adhesion and survival as contributors to chemoresistance and metastatic progression. METHODS: Quantitative gene and protein expression analyses, confocal microscopy, cell adhesion and chemosensitivity assays were performed. RESULTS: Expression of α5ß1/αvß3 integrins was downregulated upon combined stable KLK4-7 overexpression in OV-MZ-6 cells. Accordingly, the adhesion of these cells to vitronectin and fibronectin, the extracellular matrix binding proteins of α5ß1/αvß3 integrins and two predominant proteins of the peritoneal matrix, was decreased. KLK4-7-transfected cells were more resistant to paclitaxel (10-100 nmol/L: 38-54%), but not to carboplatin, which was associated with decreased apoptotic stimuli. However, the KLK4-7-induced paclitaxel resistance was not blocked by the MEK1/2 inhibitor, U0126. CONCLUSIONS: This study demonstrates that combined KLK4-7 expression by ovarian cancer cells promotes reduced integrin expression with consequently less cell-matrix attachment, and insensitivity to paclitaxel mediated by complex integrin and MAPK independent interactions, indicative of a malignant phenotype and disease progression suggesting a role for these KLKs in this process.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Calicreínas/fisiologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Paclitaxel/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Integrinas/metabolismo , Calicreínas/genética , Sistema de Sinalização das MAP Quinases , Neoplasias Ovarianas/metabolismo , Paclitaxel/uso terapêutico
4.
Biomaterials ; 31(31): 7928-36, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20688384

RESUMO

Prostate cancer metastasis is reliant on the reciprocal interactions between cancer cells and the bone niche/micro-environment. The production of suitable matrices to study metastasis, carcinogenesis and in particular prostate cancer/bone micro-environment interaction has been limited to specific protein matrices or matrix secreted by immortalised cell lines that may have undergone transformation processes altering signaling pathways and modifying gene or receptor expression. We hypothesize that matrices produced by primary human osteoblasts are a suitable means to develop an in vitro model system for bone metastasis research mimicking in vivo conditions. We have used a decellularized matrix secreted from primary human osteoblasts as a model for prostate cancer function in the bone micro-environment. We show that this collagen I rich matrix is of fibrillar appearance, highly mineralized, and contains proteins, such as osteocalcin, osteonectin and osteopontin, and growth factors characteristic of bone extracellular matrix (ECM). LNCaP and PC3 cells grown on this matrix, adhere strongly, proliferate, and express markers consistent with a loss of epithelial phenotype. Moreover, growth of these cells on the matrix is accompanied by the induction of genes associated with attachment, migration, increased invasive potential, Ca(2+) signaling and osteolysis. In summary, we show that growth of prostate cancer cells on matrices produced by primary human osteoblasts mimics key features of prostate cancer bone metastases and thus is a suitable model system to study the tumor/bone micro-environment interaction in this disease.


Assuntos
Matriz Óssea/metabolismo , Calcificação Fisiológica , Comunicação Celular , Modelos Biológicos , Osteoblastos/metabolismo , Neoplasias da Próstata/patologia , Microambiente Tumoral , Osso e Ossos/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Forma Celular , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Queratina-8/genética , Queratina-8/metabolismo , Masculino , Metaloproteinases da Matriz/metabolismo , Osteoblastos/citologia , Osteoblastos/ultraestrutura , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética
5.
J Tissue Eng Regen Med ; 4(7): 565-76, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20568083

RESUMO

Recently, research has focused on bone marrow derived multipotent mesenchymal precursor cells (MPC) and osteoblasts (OB) for clinical use in bone engineering. Prior to clinical application, cell based treatment concepts need to be evaluated in preclinical, large animal models. Sheep in particular are considered a valid model for orthopaedic and trauma related research. However, only sheep aged > 6 years show secondary osteon formation characteristic of human bone. Osteogenic cells isolated from animals of this age group remain poorly characterized. In the present study, ex vivo expanded MPC isolated from ovine bone marrow proliferated at a higher rate than OB derived from tibial compact bone as assessed in standard 2D cultures. MPC expressed the respective phenotypic profile typical for different mesenchymal cell populations (CD14(-)/CD31(-)/CD45(-)/CD29(+)/CD44(+)/CD166(+)) and showed a multilineage differentiation potential. When compared to OB, MPC had a higher mineralization potential under standard osteogenic culture conditions and expressed typical bone related markers such as osteocalcin, osteonectin and type I collagen at the mRNA and protein level. After 4 weeks in 3D culture, MPC constructs demonstrated higher cell density and mineralization, whilst cell viability on the scaffolds was assessed > 90%. Cells displayed a spindle-like morphology and formed interconnected networks. In contrast, when implanted subcutaneously into NOD/SCID mice, MPC presented a lower osteogenic potential than OB. In summary, this study provides a detailed characterisation of ovine MPC and OB from a bone engineering perspective and suggests that MPC and OB provide promising means for future bone disease related treatment applications.


Assuntos
Osso e Ossos , Células-Tronco Mesenquimais , Células-Tronco Multipotentes , Osteoblastos , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Antígenos de Diferenciação/biossíntese , Doenças Ósseas/terapia , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Calcificação Fisiológica , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Ovinos , Transplante Heterólogo , Transplante Homólogo
6.
J Cell Mol Med ; 14(4): 1003-13, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20082656

RESUMO

Cell proliferation is a critical and frequently studied feature of molecular biology in cancer research. Therefore, various assays are available using different strategies to measure cell proliferation. Metabolic assays such as AlamarBlue, water-soluble tetrazolium salt and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, which were originally developed to determine cell toxicity, are used to assess cell numbers. Additionally, proliferative activity can be determined by quantification of DNA content using fluorophores such as CyQuant and PicoGreen. Referring to data published in high ranking cancer journals, these assays were applied in 945 publications over the past 14 years to examine the proliferative behaviour of diverse cell types. In these studies, however, mainly metabolic assays were used to quantify changes in cell growth yet these assays may not accurately reflect cellular proliferation rates due to a miscorrelation of metabolic activity and cell number. Testing this hypothesis, we compared the metabolic activity of different cell types, human cancer cells and primary cells, over a time period of 4 days using AlamarBlue and the fluorometric assays CyQuant and PicoGreen to determine their DNA content. Our results show certain discrepancies in terms of over-estimation of cell proliferation with respect to the metabolic assay in comparison to DNA binding fluorophores.


Assuntos
Pesquisa Biomédica/métodos , DNA de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Idoso , Bioensaio , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Oxazinas/metabolismo , Publicações , Fatores de Tempo , Xantenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...