Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 37(1): 131-141, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28173560

RESUMO

Near-infrared reflectance spectroscopy (NIRS) is frequently used for the assessment of key nutrients of forage or crops but remains underused in ecological and physiological studies, especially to quantify non-structural carbohydrates. The aim of this study was to develop calibration models to assess the content in soluble sugars (fructose, glucose, sucrose) and starch in foliar material of Eucalyptus globulus. A partial least squares (PLS) regression was used on the sample spectral data and was compared to the contents measured using standard wet chemistry methods. The calibration models were validated using a completely independent set of samples. We used key indicators such as the ratio of prediction to deviation (RPD) and the range error ratio to give an assessment of the performance of the calibration models. Accurate calibration models were obtained for fructose and sucrose content (R2 > 0.85, root mean square error of prediction (RMSEP) of 0.95%­1.26% in the validation models), followed by sucrose and total soluble sugar content (R2 ~ 0.70 and RMSEP > 2.3%). In comparison to the others, calibration of the starch model performed very poorly with RPD = 1.70. This study establishes the ability of the NIRS calibration model to infer soluble sugar content in foliar samples of E. globulus in a rapid and cost-effective way. We suggest a complete redevelopment of the starch analysis using more specific quantification such as an HPLC-based technique to reach higher performance in the starch model. Overall, NIRS could serve as a high-throughput phenotyping tool to study plant response to stress factors.


Assuntos
Carboidratos/análise , Eucalyptus/química , Folhas de Planta/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Calibragem , Frutose/análise , Glucose/análise , Análise dos Mínimos Quadrados , Amido/análise , Sacarose/análise
2.
Tree Physiol ; 35(11): 1249-63, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26496960

RESUMO

Arguments based on the biochemistry of photosynthesis predict a positive interaction between elevated atmospheric [CO2] and temperature on photosynthesis as well as growth. In contrast, few long-term studies on trees find greater stimulation of photosynthesis in response to elevated [CO2] at warmer compared with cooler temperatures. To test for CO2 × temperature interactions on leaf photosynthesis and whole-plant growth, we planted Eucalyptus globulus Labill. in climate-controlled chambers in the field at the Hawkesbury Forest Experiment research site, and investigated how photosynthetic enhancement changed across a range of seasonal temperatures. Trees were grown in a complete two-way factorial design with two CO2 concentrations (ambient and ambient + 240 ppm) and two temperatures (ambient and ambient + 3 °C) for 15 months until they reached ∼10 m height, after which they were harvested for biomass. There was significant enhancement of photosynthesis and growth with elevated [CO2], with the photosynthetic stimulation varying with season, but there was no significant effect of warming. Photosynthetic enhancement was higher in summer (+46% at 28 °C) than in winter (+14% at 20 °C). Photosynthetic enhancement as a function of leaf temperature was consistent with theoretical expectations, but was strongly mediated by the intercellular [CO2]/ambient [CO2] (Ci/Ca) ratio across seasons. Total tree biomass after 15 months was 66% larger in elevated CO2 (P = 0.017) with no significant warming effect detected. The fraction of biomass in coarse roots was reduced in warmed trees compared with ambient temperature controls, but there was no evidence of changed biomass allocation patterns in elevated CO2. We conclude that there are strong and consistent elevated CO2 effects on photosynthesis and biomass of E. globulus. It is crucial to consider stomatal conductance under a range of conditions to appraise the interactive effect of [CO2] and temperature on photosynthetic enhancement and subsequent implications for tree growth and forest productivity in future climates.


Assuntos
Dióxido de Carbono/farmacologia , Eucalyptus/fisiologia , Temperatura Alta , Fotossíntese/efeitos dos fármacos , Estações do Ano , Árvores/fisiologia
3.
Plant Physiol Biochem ; 73: 359-67, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24189522

RESUMO

Sweet cherry (Prunus avium) trees were manipulated to analyse the contribution of soluble sugars to sink feedback down-regulation of leaf net CO2 assimilation rate (Anet) and fruit set and quality attributes. Total soluble sugar concentration and Anet were measured in the morning on fully expanded leaves of girdled branches in two sweet cherry cultivars, 'Kordia' and 'Sylvia' characterised typically by low and high crop load, respectively. Leaves on girdled trees had higher soluble sugar concentrations and reduced Anet than leaves on non-girdled trees. Moreover, RuBP carboxylation capacity of Rubisco (Vcmax) and triose-phosphate utilisation (TPU) were repressed in the girdled treatments, despite Jmax remaining unchanged; suggesting an impairment of photosynthetic capacity in response to the girdling treatment. Leaf Anet was negatively correlated to soluble sugars, suggesting a sink feedback regulatory control of photosynthesis. Although there were significantly less fruit set and retained in 'Kordia' than 'Sylvia'; girdling had contrasting effects in each cultivar. Girdling significantly increased fruit set and fruitlet retention in 'Sylvia' cultivar, but had no effect in 'Kordia' cultivar. We propose that low inherent sink demand for photoassimilates of 'Kordia' fruit could have contributed to the low fruit retention rate, since both non-girdled and girdled trees exhibited similar retention rate and that increases in foliar carbohydrates was observed above the girdle. In 'Sylvia' cultivar, the carbohydrate status may be a limiting factor for 'Sylvia' fruit, since girdling improved both fruit set and retention, and leaf soluble solids accumulation.


Assuntos
Metabolismo dos Carboidratos , Dióxido de Carbono/metabolismo , Frutas/crescimento & desenvolvimento , Fotossíntese , Desenvolvimento Vegetal , Folhas de Planta/fisiologia , Prunus/fisiologia , Clorofila , Regulação para Baixo , Frutas/metabolismo , Folhas de Planta/metabolismo , Prunus/classificação , Prunus/crescimento & desenvolvimento , Ribulose-Bifosfato Carboxilase/metabolismo , Especificidade da Espécie , Árvores
4.
Tree Physiol ; 32(8): 958-67, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22874831

RESUMO

Increased climatic variability, including extended periods of drought stress, may compromise on the health of forest ecosystems. The effects of defoliating pests on plantations may also impact on forest productivity. Interactions between climate signals and pest activity are poorly understood. In this study, we examined the combined effects of reduced water availability and defoliation on maximum photosynthetic rate (A(sat)), stomatal conductance (g(s)), plant water status and growth of Eucalyptus globulus Labill. Field-grown plants were subjected to two water-availability regimes, rain-fed (W-) and irrigated (W+). In the summer of the second year of growth, leaves from 75% of crown length removed from trees in both watering treatments and physiological responses within the canopies were examined. We hypothesized that defoliation would result in improved plant water status providing a mechanistic insight into leaf- and canopy-scale gas-exchange responses. Defoliated trees in the W+ treatment exhibited higher A(sat) and g(s) compared with non-defoliated trees, but these responses were not observed in the W- treatment. In contrast, at the whole-plant scale, maximum rates of transpiration (E(max)) and canopy conductance (G(Cmax)) and soil-to-leaf hydraulic conductance (K(P)) increased in both treatments following defoliation. As a result, plant water status was unaffected by defoliation and trees in the defoliated treatments exhibited homeostasis in this respect. Whole-plant soil-to-leaf hydraulic conductance was strongly correlated with leaf scale g(s) and A(sat) following the defoliation, providing a mechanistic insight into compensatory up-regulation of photosynthesis. Above-ground height and diameter growth were unaffected by defoliation in both water availability treatments, suggesting that plants use a range of responses to compensate for the impacts of defoliation.


Assuntos
Secas , Eucalyptus/fisiologia , Fotossíntese/fisiologia , Doenças das Plantas , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Água/fisiologia , Irrigação Agrícola , Clima , Eucalyptus/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Estômatos de Plantas/fisiologia , Chuva , Solo , Estresse Fisiológico , Árvores/crescimento & desenvolvimento , Árvores/fisiologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...