Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Front Cardiovasc Med ; 11: 1351746, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464843

RESUMO

Introduction: Out-of-office blood pressure (BP) monitoring is increasingly valuable in the diagnosis and management of hypertension. With advances in wearable BP technologies, the ability to gain insight into BP outside of traditional centers of care has expanded greatly. Methods: Here we explore the usability of a novel, wrist-worn BP cuff monitor for out-of-office data collection with participants following digital cues rather than in-person instruction. Transmitted measurements were used to evaluate BP variation with the time of day and day of week, BP variation with mood, and orthostatic measurements. Results: Fifty participants, with a mean age of 44.5 years, were enrolled and received the BP monitor. 82% of the participants transmitted data via the smartphone application, and the median wear time of the device during the 4-week study was 11 days (IQR 8-17). Discussion: This prospective digital pilot study illustrates the usability of wearable oscillometric BP technology combined with digital cues via a smartphone application to obtain complex out-of-office BP measurements, including orthostatic vital signs and BP associated with emotion. 25 out of 32 participants who attempted orthostatic vital signs based on in-app instruction were able to do so correctly, while 24 participants transmitted BP readings associated with emotion, with a significant difference in BP noted between calm and stressed emotional states.

2.
Sci Rep ; 14(1): 4655, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409137

RESUMO

Prior studies have shown that sleep duration peri-vaccination influences an individual's antibody response. However, whether peri-vaccination sleep affects real-world vaccine effectiveness is unknown. Here, we tested whether objectively measured sleep around COVID-19 vaccination affected breakthrough infection rates. DETECT is a study of digitally recruited participants who report COVID-19-related information, including vaccination and illness data. Objective sleep data are also recorded through activity trackers. We compared the impact of sleep duration, sleep efficiency, and frequency of awakenings on reported breakthrough infection after the 2nd vaccination and 1st COVID-19 booster. Logistic regression models were created to examine if sleep metrics predicted COVID-19 breakthrough infection independent of age and gender. Self-reported breakthrough COVID-19 infection following 2nd COVID-19 vaccination and 1st booster. 256 out of 5265 individuals reported a breakthrough infection after the 2nd vaccine, and 581 out of 2583 individuals reported a breakthrough after the 1st booster. There was no difference in sleep duration between those with and without breakthrough infection. Increased awakening frequency was associated with breakthrough infection after the 1st booster with 3.01 ± 0.65 awakenings/hour in the breakthrough group compared to 2.82 ± 0.65 awakenings/hour in those without breakthrough (P < 0.001). Cox proportional hazards modeling showed that age < 60 years (hazard ratio 2.15, P < 0.001) and frequency of awakenings (hazard ratio 1.17, P = 0.019) were associated with breakthrough infection after the 1st booster. Sleep duration was not associated with breakthrough infection after COVID vaccination. While increased awakening frequency during sleep was associated with breakthrough infection beyond traditional risk factors, the clinical implications of this finding are unclear.


Assuntos
Infecções Irruptivas , COVID-19 , Humanos , Pessoa de Meia-Idade , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Sono , Vacinação , Masculino , Feminino
3.
medRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38352465

RESUMO

The 12-lead electrocardiogram (ECG) is an integral component to the diagnosis of a multitude of cardiovascular conditions. It is performed using a complex set of skin surface electrodes, limiting its use outside traditional clinical settings. We developed an artificial intelligence algorithm, trained over 600,000 clinically acquired ECGs, to explore whether fewer leads as input are sufficient to reconstruct a full 12-lead ECG. Two limb leads (I and II) and one precordial lead (V3) were required to generate a reconstructed synthetic 12-lead ECG highly correlated with the original ECG. An automatic algorithm for detection of acute myocardial infarction (MI) performed similarly for original and reconstructed ECGs (AUC=0.94). When interpreted by cardiologists, reconstructed ECGs achieved an accuracy of 81.4±5.0% in identifying ST elevation MI, comparable with the original 12-lead ECGs (accuracy 84.6±4.6%). These results will impact development efforts to innovate ECG acquisition methods with simplified tools in non-specialized settings.

5.
NPJ Digit Med ; 6(1): 229, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087028

RESUMO

Early identification of atrial fibrillation (AF) can reduce the risk of stroke, heart failure, and other serious cardiovascular outcomes. However, paroxysmal AF may not be detected even after a two-week continuous monitoring period. We developed a model to quantify the risk of near-term AF in a two-week period, based on AF-free ECG intervals of up to 24 h from 459,889 patch-based ambulatory single-lead ECG (modified lead II) recordings of up to 14 days. A deep learning model was used to integrate ECG morphology data with demographic and heart rhythm features toward AF prediction. Observing a 1-day AF-free ECG recording, the model with deep learning features produced the most accurate prediction of near-term AF with an area under the curve AUC = 0.80 (95% confidence interval, CI = 0.79-0.81), significantly improving discrimination compared to demographic metrics alone (AUC 0.67; CI = 0.66-0.68). Our model was able to predict incident AF over a two-week time frame with high discrimination, based on AF-free single-lead ECG recordings of various lengths. Application of the model may enable a digital strategy for improving diagnostic capture of AF by risk stratifying individuals with AF-negative ambulatory monitoring for prolonged or recurrent monitoring, potentially leading to more rapid initiation of treatment.

6.
Neuropsychiatr Dis Treat ; 19: 2217-2239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881808

RESUMO

Introduction: Heart rate variability (HRV) is a measure of the fluctuation in time interval between consecutive heart beats. Decreased heart rate variability has been shown to have associations with autonomic dysfunction in psychiatric conditions such as depression, substance abuse, anxiety, and schizophrenia, although its use as a prognostic tool remains highly debated. This study aims to review the current literature on heart rate variability as a diagnostic and prognostic tool in psychiatric populations. Methods: A literature search was conducted using the MEDLINE, EMBASE, Cochrane, and PsycINFO libraries to identify full-text studies involving adult psychiatric populations that reported HRV measurements. From 1647 originally identified, 31 studies were narrowed down through an abstract and full-text screen. Studies were excluded if they enrolled adolescents or children, used animal models, enrolled patients with another primary diagnosis other than psychiatric as outlined by the diagnostic and statistical manual of mental disorders (DSM) V, or if they assessed HRV in the context of treatment rather than diagnosis. Study quality assessment was conducted using a modified Downs and Blacks quality assessment tool for observational rather than interventional studies. Data were reported in four tables: 1) summarizing study characteristics, 2) methods of HRV detection, 3) key findings and statistics, and 4) quality assessment. Results: There is significant variability between studies in their methodology of recording as well as reporting HRV, which makes it difficult to meaningfully interpret data that is clinically applicable due to the presence of significant bias in existing studies. The presence of an association between HRV and the severity of various psychiatric disorders, however, remains promising. Conclusion: Future studies should be done to further explore how HRV parameters may be used to enhance the diagnosis and prognosis of several psychiatric disorders.

7.
JAMA Netw Open ; 6(1): e2253800, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36719683

RESUMO

This cohort study examines traditional surveillance and self-reported COVID-19 test result data collected from independent smartphone app­based studies in the US and Germany.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Autorrelato , Prevalência , SARS-CoV-2 , Alemanha/epidemiologia
8.
Lancet Digit Health ; 4(11): e777-e786, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36154810

RESUMO

BACKGROUND: Traditional viral illness surveillance relies on in-person clinical or laboratory data, paper-based data collection, and outdated technology for data transfer and aggregation. We aimed to assess whether continuous sensor data can provide an early warning signal for COVID-19 activity as individual physiological and behavioural changes might precede symptom onset, care seeking, and diagnostic testing. METHODS: This multivariable, population-based, modelling study recruited adult (aged ≥18 years) participants living in the USA who had a smartwatch or fitness tracker on any device that connected to Apple HealthKit or Google Fit and had joined the DETECT study by downloading the MyDataHelps app. In the model development cohort, we included people who had participated in DETECT between April 1, 2020, and Jan 14, 2022. In the validation cohort, we included individuals who had participated between Jan 15 and Feb 15, 2022. When a participant joins DETECT, they fill out an intake survey of demographic information, including their ZIP code (postal code), and surveys on symptoms, symptom onset, and viral illness test dates and results, if they become unwell. When a participant connects their device, historical sensor data are collected, if available. Sensor data continue to be collected unless a participant withdraws from the study. Using sensor data, we collected each participant's daily resting heart rate and step count during the entire study period and identified anomalous sensor days, in which resting heart rate was higher than, and step count was lower than, a specified threshold calculated for each individual by use of their baseline data. The proportion of users with anomalous data each day was used to create a 7-day moving average. For the main cohort, a negative binomial model predicting 7-day moving averages for COVID-19 case counts, as reported by the Centers for Disease Control and Prevention (CDC), in real time, 6 days in the future, and 12 days in the future in the USA and California was fitted with CDC-reported data from 3 days before alone (H0) or in combination with anomalous sensor data (H1). We compared the predictions with Pearson correlation. We then validated the model in the validation cohort. FINDINGS: Between April 1, 2020, and Jan 14, 2022, 35 842 participants enrolled in DETECT, of whom 4006 in California and 28 527 in the USA were included in our main cohort. The H1 model significantly outperformed the H0 model in predicting the 7-day moving average COVID-19 case counts in California and the USA. For example, Pearson correlation coefficients for predictions 12 days in the future increased by 32·9% in California (from 0·70 [95% CI 0·65-0·73] to 0·93 [0·92-0·94]) and by 12·2% (from 0·82 [0·79-0·84] to 0·92 [0·91-0·93]) in the USA from the H0 model to the H1 model. Our validation model also showed significant correlations for predictions in real time, 6 days in the future, and 12 days in the future. INTERPRETATION: Our study showed that passively collected sensor data from consenting participants can provide real-time disease tracking and forecasting. With a growing population of wearable technology users, these sensor data could be integrated into viral surveillance programmes. FUNDING: The National Center for Advancing Translational Sciences of the US National Institutes of Health, The Rockefeller Foundation, and Amazon Web Services.


Assuntos
COVID-19 , Adulto , Humanos , Estados Unidos/epidemiologia , Adolescente , COVID-19/diagnóstico , COVID-19/epidemiologia , SARS-CoV-2 , Modelos Estatísticos
9.
Nat Biotechnol ; 40(8): 1174-1175, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922570

Assuntos
Vacinação , Fenótipo
10.
Nat Biotechnol ; 40(7): 1013-1022, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35726090

RESUMO

At the beginning of the COVID-19 pandemic, analog tools such as nasopharyngeal swabs for PCR tests were center stage and the major prevention tactics of masking and physical distancing were a throwback to the 1918 influenza pandemic. Overall, there has been scant regard for digital tools, particularly those based on smartphone apps, which is surprising given the ubiquity of smartphones across the globe. Smartphone apps, given accessibility in the time of physical distancing, were widely used for tracking, tracing and educating the public about COVID-19. Despite limitations, such as concerns around data privacy, data security, digital health illiteracy and structural inequities, there is ample evidence that apps are beneficial for understanding outbreak epidemiology, individual screening and contact tracing. While there were successes and failures in each category, outbreak epidemiology and individual screening were substantially enhanced by the reach of smartphone apps and accessory wearables. Continued use of apps within the digital infrastructure promises to provide an important tool for rigorous investigation of outcomes both in the ongoing outbreak and in future epidemics.


Assuntos
COVID-19 , Aplicativos Móveis , COVID-19/epidemiologia , Busca de Comunicante , Humanos , Pandemias/prevenção & controle , SARS-CoV-2/genética
11.
NPJ Digit Med ; 5(1): 49, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440684

RESUMO

The ability to identify who does or does not experience the intended immune response following vaccination could be of great value in not only managing the global trajectory of COVID-19 but also helping guide future vaccine development. Vaccine reactogenicity can potentially lead to detectable physiologic changes, thus we postulated that we could detect an individual's initial physiologic response to a vaccine by tracking changes relative to their pre-vaccine baseline using consumer wearable devices. We explored this possibility using a smartphone app-based research platform that enabled volunteers (39,701 individuals) to share their smartwatch data, as well as self-report, when appropriate, any symptoms, COVID-19 test results, and vaccination information. Of 7728 individuals who reported at least one vaccination dose, 7298 received an mRNA vaccine, and 5674 provided adequate data from the peri-vaccine period for analysis. We found that in most individuals, resting heart rate (RHR) increased with respect to their individual baseline after vaccination, peaked on day 2, and returned to normal by day 6. This increase in RHR was greater than one standard deviation above individuals' normal daily pattern in 47% of participants after their second vaccine dose. Consistent with other reports of subjective reactogenicity following vaccination, we measured a significantly stronger effect after the second dose relative to the first, except those who previously tested positive to COVID-19, and a more pronounced increase for individuals who received the Moderna vaccine. Females, after the first dose only, and those aged <40 years, also experienced a greater objective response after adjusting for possible confounding factors. These early findings show that it is possible to detect subtle, but important changes from an individual's normal as objective evidence of reactogenicity, which, with further work, could prove useful as a surrogate for vaccine-induced immune response.

12.
NPJ Digit Med ; 4(1): 166, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880366

RESUMO

Individual smartwatch or fitness band sensor data in the setting of COVID-19 has shown promise to identify symptomatic and pre-symptomatic infection or the need for hospitalization, correlations between peripheral temperature and self-reported fever, and an association between changes in heart-rate-variability and infection. In our study, a total of 38,911 individuals (61% female, 15% over 65) have been enrolled between March 25, 2020 and April 3, 2021, with 1118 reported testing positive and 7032 negative for COVID-19 by nasopharyngeal PCR swab test. We propose an explainable gradient boosting prediction model based on decision trees for the detection of COVID-19 infection that can adapt to the absence of self-reported symptoms and to the available sensor data, and that can explain the importance of each feature and the post-test-behavior for the individuals. We tested it in a cohort of symptomatic individuals who exhibited an AUC of 0.83 [0.81-0.85], or AUC = 0.78 [0.75-0.80] when considering only data before the test date, outperforming state-of-the-art algorithm in these conditions. The analysis of all individuals (including asymptomatic and pre-symptomatic) when self-reported symptoms were excluded provided an AUC of 0.78 [0.76-0.79], or AUC of 0.70 [0.69-0.72] when considering only data before the test date. Extending the use of predictive algorithms for detection of COVID-19 infection based only on passively monitored data from any device, we showed that it is possible to scale up this platform and apply the algorithm in other settings where self-reported symptoms can not be collected.

14.
medRxiv ; 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33972954

RESUMO

Two mRNA vaccines and one adenovirus-based vaccine against SARS CoV-2 are currently being distributed at scale in the United States. Objective evidence of a specific individual's physiologic response to that vaccine are not routinely tracked but may offer insights into the acute immune response and personal and/or vaccine characteristics associated with that. We explored this possibility using a smartphone app-based research platform developed early in the pandemic that enabled volunteers (38,911 individuals between 25 March 2020 and 4 April 2021) to share their smartwatch and activity tracker data, as well as self-report, when appropriate, any symptoms, COVID-19 test results and vaccination dates and type. Of 4,110 individuals who reported at least one mRNA vaccination dose, 3,312 provided adequate resting heart rate data from the peri-vaccine period for analysis. We found changes in resting heart rate with respect to an individual baseline increased the days after vaccination, peaked on day 2, and returned to normal on day 6, with a much stronger effect after second dose with respect to first dose (average changes 1.6 versus 0.5 beats per minute). The changes were more pronounced for individuals who received the Moderna vaccine (on both doses), those who previously tested positive to COVID-19 (on dose 1), and for individuals aged <40 years, after adjusting for possible confounding factors. Taking advantage of continuous passive data from personal sensors could potentially enable the identification of a digital fingerprint of inflammation, which might prove useful as a surrogate for vaccine-induced immune response.

16.
IEEE J Biomed Health Inform ; 25(7): 2398-2408, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33617456

RESUMO

In this study, we propose a post-hoc explainability framework for deep learning models applied to quasi-periodic biomedical time-series classification. As a case study, we focus on the problem of atrial fibrillation (AF) detection from electrocardiography signals, which has strong clinical relevance. Starting from a state-of-the-art pretrained model, we tackle the problem from two different perspectives: global and local explanation. With global explanation, we analyze the model behavior by looking at entire classes of data, showing which regions of the input repetitive patterns have the most influence for a specific outcome of the model. Our explanation results align with the expectations of clinical experts, showing that features crucial for AF detection contribute heavily to the final decision. These features include R-R interval regularity, absence of the P-wave or presence of electrical activity in the isoelectric period. On the other hand, with local explanation, we analyze specific input signals and model outcomes. We present a comprehensive analysis of the network facing different conditions, whether the model has correctly classified the input signal or not. This enables a deeper understanding of the network's behavior, showing the most informative regions that trigger the classification decision and highlighting possible causes of misbehavior.


Assuntos
Fibrilação Atrial , Eletrocardiografia , Algoritmos , Fibrilação Atrial/diagnóstico , Humanos
17.
J Am Coll Cardiol ; 77(3): 300-313, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33478654

RESUMO

The role of physicians has always been to synthesize the data available to them to identify diagnostic patterns that guide treatment and follow response. Today, increasingly sophisticated machine learning algorithms may grow to support clinical experts in some of these tasks. Machine learning has the potential to benefit patients and cardiologists, but only if clinicians take an active role in bringing these new algorithms into practice. The aim of this review is to introduce clinicians who are not data science experts to key concepts in machine learning that will allow them to better understand the field and evaluate new literature and developments. The current published data in machine learning for cardiovascular disease is then summarized, using both a bibliometric survey, with code publicly available to enable similar analysis for any research topic of interest, and select case studies. Finally, several ways that clinicians can and must be involved in this emerging field are presented.


Assuntos
Cardiologia , Aprendizado de Máquina , Humanos
18.
Nat Med ; 27(1): 73-77, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33122860

RESUMO

Traditional screening for COVID-19 typically includes survey questions about symptoms and travel history, as well as temperature measurements. Here, we explore whether personal sensor data collected over time may help identify subtle changes indicating an infection, such as in patients with COVID-19. We have developed a smartphone app that collects smartwatch and activity tracker data, as well as self-reported symptoms and diagnostic testing results, from individuals in the United States, and have assessed whether symptom and sensor data can differentiate COVID-19 positive versus negative cases in symptomatic individuals. We enrolled 30,529 participants between 25 March and 7 June 2020, of whom 3,811 reported symptoms. Of these symptomatic individuals, 54 reported testing positive and 279 negative for COVID-19. We found that a combination of symptom and sensor data resulted in an area under the curve (AUC) of 0.80 (interquartile range (IQR): 0.73-0.86) for discriminating between symptomatic individuals who were positive or negative for COVID-19, a performance that is significantly better (P < 0.01) than a model1 that considers symptoms alone (AUC = 0.71; IQR: 0.63-0.79). Such continuous, passively captured data may be complementary to virus testing, which is generally a one-off or infrequent sampling assay.


Assuntos
COVID-19/diagnóstico , Monitorização Fisiológica/métodos , Dispositivos Eletrônicos Vestíveis , Adulto , Idoso , COVID-19/patologia , Portador Sadio , Feminino , Frequência Cardíaca , Humanos , Masculino , Programas de Rastreamento , Pessoa de Meia-Idade , Autorrelato , Sono , Estados Unidos
19.
Europace ; 22(12): 1781-1787, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-32995870

RESUMO

AIMS: Screening for asymptomatic atrial fibrillation (AF) could prevent strokes and save lives, but the AF burden of those detected can impact prognosis. New technologies enable continuous monitoring or intermittent electrocardiogram (ECG) snapshots, however, the relationship between AF detection rates and the burden of AF found with intermittent strategies is unknown. We simulated the likelihood of detecting AF using real-world 2-week continuous ECG recordings and developed a generalizable model for AF detection strategies. METHODS AND RESULTS: From 1738 asymptomatic screened individuals, ECG data of 69 individuals (mean age 76.3, median burden 1.9%) with new AF found during 14 days continuous monitoring were used to simulate 30 seconds ECG snapshots one to four times daily for 14 days. Based on this simulation, 35-66% of individuals with AF would be detected using intermittent screening. Twice-daily snapshots for 2 weeks missed 48% of those detected by continuous monitoring, but mean burden was 0.68% vs. 4% in those detected (P < 0.001). In a cohort of 6235 patients (mean age 69.2, median burden 4.6%) with paroxysmal AF during clinically indicated monitoring, simulated detection rates were 53-76%. The Markovian model of AF detection using mean episode duration and mean burden simulated actual AF detection with ≤9% error across the range of screening frequencies and durations. CONCLUSION: Using twice-daily ECG snapshots over 2 weeks would detect only half of individuals discovered to have AF by continuous recordings, but AF burden of those missed was low. A model predicting AF detection, validated using real-world data, could assist development of optimized AF screening programmes.


Assuntos
Fibrilação Atrial , Acidente Vascular Cerebral , Idoso , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/epidemiologia , Eletrocardiografia , Eletrocardiografia Ambulatorial , Humanos , Programas de Rastreamento , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...